This is the Windows app named fairseq-lua whose latest release can be downloaded as fairseq-luasourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named fairseq-lua with OnWorks for free.
برای اجرای این برنامه این دستورالعمل ها را دنبال کنید:
- 1. این برنامه را در رایانه شخصی خود دانلود کنید.
- 2. در فایل منیجر ما https://www.onworks.net/myfiles.php?username=XXXXX نام کاربری مورد نظر خود را وارد کنید.
- 3. این برنامه را در چنین فایل منیجر آپلود کنید.
- 4. هر شبیه ساز آنلاین OS OnWorks را از این وب سایت راه اندازی کنید، اما شبیه ساز آنلاین ویندوز بهتر است.
- 5. از OnWorks Windows OS که به تازگی راه اندازی کرده اید، به مدیر فایل ما https://www.onworks.net/myfiles.php?username=XXXXX با نام کاربری که می خواهید بروید.
- 6. برنامه را دانلود و نصب کنید.
- 7. Wine را از مخازن نرم افزار توزیع لینوکس خود دانلود کنید. پس از نصب، می توانید روی برنامه دوبار کلیک کنید تا آنها را با Wine اجرا کنید. همچنین می توانید PlayOnLinux را امتحان کنید، یک رابط کاربری فانتزی بر روی Wine که به شما کمک می کند برنامه ها و بازی های محبوب ویندوز را نصب کنید.
Wine راهی برای اجرای نرم افزار ویندوز بر روی لینوکس است، اما بدون نیاز به ویندوز. Wine یک لایه سازگار با ویندوز منبع باز است که می تواند برنامه های ویندوز را مستقیماً بر روی هر دسکتاپ لینوکس اجرا کند. اساساً، Wine در تلاش است تا به اندازه کافی از ویندوز را از ابتدا مجدداً پیاده سازی کند تا بتواند همه آن برنامه های ویندوز را بدون نیاز به ویندوز اجرا کند.
اسکرین شات ها:
fairseq-lua
DESCRIPTION:
fairseq-lua is the original Lua/Torch7 version of Facebook AI Research’s sequence modeling toolkit, designed for neural machine translation (NMT) and sequence generation. It introduced early attention-based architectures and training pipelines that later evolved into the modern PyTorch-based fairseq. The framework implements sequence-to-sequence models with attention, beam search decoding, and distributed training, providing a research platform for exploring translation, summarization, and language modeling. Its modular design made it easy to prototype new architectures by modifying encoders, decoders, or attention mechanisms. Although now deprecated in favor of the PyTorch rewrite, fairseq-lua played a key role in advancing large-scale NMT systems, such as early versions of Facebook’s production translation models. It remains an important historical reference for neural sequence learning frameworks.
امکانات
- Sequence-to-sequence architecture with attention mechanism
- Beam search decoding for accurate translation outputs
- Multi-GPU training and distributed parallelization
- Modular design for custom encoder–decoder experiments
- Support for translation, summarization, and language modeling tasks
- Historical foundation for the PyTorch-based fairseq framework
زبان برنامه نویسی
لوا
دسته بندی ها
This is an application that can also be fetched from https://sourceforge.net/projects/fairseq-lua.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.