RLax download for Linux

This is the Linux app named RLax whose latest release can be downloaded as RLax0.1.8sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

 
 

Download and run online this app named RLax with OnWorks for free.

Suivez ces instructions pour exécuter cette application :

- 1. Téléchargé cette application sur votre PC.

- 2. Entrez dans notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous voulez.

- 3. Téléchargez cette application dans ce gestionnaire de fichiers.

- 4. Démarrez l'émulateur en ligne OnWorks Linux ou Windows en ligne ou l'émulateur en ligne MACOS à partir de ce site Web.

- 5. Depuis le système d'exploitation OnWorks Linux que vous venez de démarrer, accédez à notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous souhaitez.

- 6. Téléchargez l'application, installez-la et exécutez-la.

CAPTURES D'ÉCRAN:


RLax


DESCRIPTION:

RLax (pronounced “relax”) is a JAX-based library developed by Google DeepMind that provides reusable mathematical building blocks for constructing reinforcement learning (RL) agents. Rather than implementing full algorithms, RLax focuses on the core functional operations that underpin RL methods—such as computing value functions, returns, policy gradients, and loss terms—allowing researchers to flexibly assemble their own agents. It supports both on-policy and off-policy learning, as well as value-based, policy-based, and model-based approaches. RLax is fully JIT-compilable with JAX, enabling high-performance execution across CPU, GPU, and TPU backends. The library implements tools for Bellman equations, return distributions, general value functions, and policy optimization in both continuous and discrete action spaces. It integrates seamlessly with DeepMind’s Haiku (for neural network definition) and Optax (for optimization), making it a key component in modular RL pipelines.



Comment ça marche

  • Modular reinforcement learning primitives (values, returns, and policies)
  • JAX-optimized for GPU/TPU acceleration and automatic differentiation
  • Supports on-policy and off-policy learning paradigms
  • Implements distributional value functions and general value functions
  • Integrates with Haiku and Optax for neural network and optimization pipelines
  • Comprehensive testing and examples for reproducibility and educational use


Langage de programmation

Python, shell Unix


Catégories

Bibliothèques

This is an application that can also be fetched from https://sourceforge.net/projects/rlax.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.



Derniers programmes en ligne Linux et Windows


Catégories à télécharger Logiciels et programmes pour Windows et Linux