This is the Linux app named MADDPG whose latest release can be downloaded as maddpgsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named MADDPG with OnWorks for free.
Ikuti petunjuk ini untuk menjalankan aplikasi ini:
- 1. Download aplikasi ini di PC Anda.
- 2. Masuk ke file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan username yang anda inginkan.
- 3. Upload aplikasi ini di filemanager tersebut.
- 4. Jalankan emulator online OnWorks Linux atau Windows online atau emulator online MACOS dari situs web ini.
- 5. Dari OS Linux OnWorks yang baru saja Anda mulai, buka file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan nama pengguna yang Anda inginkan.
- 6. Download aplikasinya, install dan jalankan.
MADDPG
DESKRIPSI:
MADDPG (Multi-Agent Deep Deterministic Policy Gradient) is the official code release from OpenAI’s paper Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. The repository implements a multi-agent reinforcement learning algorithm that extends DDPG to scenarios where multiple agents interact in shared environments. Each agent has its own policy, but training uses centralized critics conditioned on the observations and actions of all agents, enabling learning in cooperative, competitive, and mixed settings. The code is built on top of TensorFlow and integrates with the Multiagent Particle Environments (MPE) for benchmarking. Researchers can use it to reproduce the experiments presented in the paper, which demonstrate how agents learn behaviors such as coordination, competition, and communication. Although archived, MADDPG remains a widely cited baseline in multi-agent reinforcement learning research and has inspired further algorithmic developments.
Fitur
- Implementation of Multi-Agent DDPG with centralized critics
- Supports cooperative, competitive, and mixed-agent settings
- TensorFlow-based training pipeline for multi-agent RL
- Compatible with Multiagent Particle Environments (MPE)
- Scripts for reproducing results from the original paper
- Reference implementation for research in multi-agent RL
Bahasa Pemrograman
Ular sanca
KATEGORI
This is an application that can also be fetched from https://sourceforge.net/projects/maddpg.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.