CFNet download for Windows

This is the Windows app named CFNet whose latest release can be downloaded as cfnetsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

 
 

Download and run online this app named CFNet with OnWorks for free.

Ikuti petunjuk ini untuk menjalankan aplikasi ini:

- 1. Download aplikasi ini di PC Anda.

- 2. Masuk ke file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan username yang anda inginkan.

- 3. Upload aplikasi ini di filemanager tersebut.

- 4. Mulai emulator online OS OnWorks apa pun dari situs web ini, tetapi emulator online Windows yang lebih baik.

- 5. Dari OS Windows OnWorks yang baru saja Anda mulai, buka file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan nama pengguna yang Anda inginkan.

- 6. Unduh aplikasi dan instal.

- 7. Unduh Wine dari repositori perangkat lunak distribusi Linux Anda. Setelah terinstal, Anda kemudian dapat mengklik dua kali aplikasi untuk menjalankannya dengan Wine. Anda juga dapat mencoba PlayOnLinux, antarmuka mewah di atas Wine yang akan membantu Anda menginstal program dan game Windows populer.

Wine adalah cara untuk menjalankan perangkat lunak Windows di Linux, tetapi tidak memerlukan Windows. Wine adalah lapisan kompatibilitas Windows sumber terbuka yang dapat menjalankan program Windows secara langsung di desktop Linux apa pun. Pada dasarnya, Wine mencoba untuk mengimplementasikan kembali Windows dari awal sehingga dapat menjalankan semua aplikasi Windows tersebut tanpa benar-benar membutuhkan Windows.

CFNet



DESKRIPSI:

CFNet is the official implementation of End-to-end representation learning for Correlation Filter based tracking (CVPR 2017) by Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip H. S. Torr. The framework combines correlation filters with deep convolutional neural networks to create an efficient and accurate visual object tracker. Unlike traditional correlation filter trackers that rely on hand-crafted features, CFNet learns feature representations directly from data in an end-to-end fashion. This allows the tracker to be both computationally efficient and robust to appearance changes such as scale, rotation, and illumination variations. The repository provides pre-trained models, training code, and testing scripts for evaluating the tracker on standard benchmarks. By bridging the gap between correlation filters and deep learning, CFNet provides a foundation for further research in real-time object tracking.



Fitur

  • Implements CFNet tracker from CVPR 2017
  • End-to-end learning of correlation filter representations
  • Combines efficiency of correlation filters with robustness of CNNs
  • Pre-trained models and evaluation scripts included
  • Training code provided for reproducing results
  • Suitable for real-time visual object tracking research


Bahasa Pemrograman

MATLAB


KATEGORI

Pembelajaran mesin

This is an application that can also be fetched from https://sourceforge.net/projects/cfnet.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.



Program online Linux & Windows terbaru


Kategori untuk mengunduh Perangkat Lunak & Program untuk Windows & Linux