This is the Windows app named Hiera whose latest release can be downloaded as v0.1.4_CodeLicenseisnowApache2.0!sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Hiera with OnWorks for free.
Ikuti petunjuk ini untuk menjalankan aplikasi ini:
- 1. Download aplikasi ini di PC Anda.
- 2. Masuk ke file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan username yang anda inginkan.
- 3. Upload aplikasi ini di filemanager tersebut.
- 4. Mulai emulator online OS OnWorks apa pun dari situs web ini, tetapi emulator online Windows yang lebih baik.
- 5. Dari OS Windows OnWorks yang baru saja Anda mulai, buka file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan nama pengguna yang Anda inginkan.
- 6. Unduh aplikasi dan instal.
- 7. Unduh Wine dari repositori perangkat lunak distribusi Linux Anda. Setelah terinstal, Anda kemudian dapat mengklik dua kali aplikasi untuk menjalankannya dengan Wine. Anda juga dapat mencoba PlayOnLinux, antarmuka mewah di atas Wine yang akan membantu Anda menginstal program dan game Windows populer.
Wine adalah cara untuk menjalankan perangkat lunak Windows di Linux, tetapi tidak memerlukan Windows. Wine adalah lapisan kompatibilitas Windows sumber terbuka yang dapat menjalankan program Windows secara langsung di desktop Linux apa pun. Pada dasarnya, Wine mencoba untuk mengimplementasikan kembali Windows dari awal sehingga dapat menjalankan semua aplikasi Windows tersebut tanpa benar-benar membutuhkan Windows.
SCREENSHOT:
Hiera
DESKRIPSI:
Hiera is a hierarchical vision transformer designed to be fast, simple, and strong across image and video recognition tasks. The core idea is to use straightforward hierarchical attention with a minimal set of architectural “bells and whistles,” achieving competitive or superior accuracy while being markedly faster at inference and often faster to train. The repository provides installation options (from source or Torch Hub), a model zoo with pre-trained checkpoints, and code for evaluation and fine-tuning on standard benchmarks. Documentation emphasizes that model weights may have separate licensing and that the code targets practical experimentation for both research and downstream tasks. Community discussions cover topics like dataset pretrains, integration in other frameworks, and comparisons with related implementations. Security and contribution guidelines follow Meta’s open-source practices, and activity shows ongoing interest and usage across the community.
Fitur
- Hierarchical attention transformer architecture
- High-throughput inference with strong accuracy
- Model zoo with ready-to-use checkpoints
- Training and fine-tuning scripts for common benchmarks
- Torch Hub and source installation paths
- Active community discussions and issue tracking
Bahasa Pemrograman
Ular sanca
KATEGORI
This is an application that can also be fetched from https://sourceforge.net/projects/hiera.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.