MoCo v3 download for Linux

This is the Linux app named MoCo v3 whose latest release can be downloaded as moco-v3sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

 
 

Download and run online this app named MoCo v3 with OnWorks for free.

Segui queste istruzioni per eseguire questa app:

- 1. Scaricata questa applicazione sul tuo PC.

- 2. Entra nel nostro file manager https://www.onworks.net/myfiles.php?username=XXXXX con il nome utente che desideri.

- 3. Carica questa applicazione in tale file manager.

- 4. Avviare l'emulatore online OnWorks Linux o Windows online o l'emulatore online MACOS da questo sito Web.

- 5. Dal sistema operativo OnWorks Linux che hai appena avviato, vai al nostro file manager https://www.onworks.net/myfiles.php?username=XXXXX con il nome utente che desideri.

- 6. Scarica l'applicazione, installala ed eseguila.

IMMAGINI:


MoCo v3


DESCRIZIONE:

MoCo v3 is a PyTorch reimplementation of Momentum Contrast v3 (MoCo v3), Facebook Research’s state-of-the-art self-supervised learning framework for visual representation learning using ResNet and Vision Transformer (ViT) backbones. Originally developed in TensorFlow for TPUs, this version faithfully reproduces the paper’s results on GPUs while offering an accessible and scalable PyTorch interface. MoCo v3 introduces improvements for training self-supervised ViTs by combining contrastive learning with transformer-based architectures, achieving strong linear and end-to-end fine-tuning performance on ImageNet benchmarks. The repository supports multi-node distributed training, automatic mixed precision, and linear scaling of learning rates for large-batch regimes. It also includes scripts for self-supervised pretraining, linear classification, and fine-tuning within the DeiT framework.



Caratteristiche

  • Compatible with ImageNet and standard vision benchmarks for transfer learning
  • Configurable via command-line flags with scalable hyperparameters and batch settings
  • Integrated scripts for self-supervised pretraining, linear evaluation, and DeiT fine-tuning
  • Achieves strong ImageNet results (e.g., 74.6% linear top-1 on ResNet-50, 83.2% fine-tuned ViT-B)
  • Supports large-scale multi-GPU distributed training with mixed precision
  • PyTorch implementation of self-supervised MoCo v3 for ResNet and ViT models


Linguaggio di programmazione

Python


Categorie

Framework di apprendimento profondo

This is an application that can also be fetched from https://sourceforge.net/projects/moco-v3.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.



Gli ultimi programmi online per Linux e Windows


Categorie per scaricare software e programmi per Windows e Linux