This is the Windows app named ConvNeXt V2 whose latest release can be downloaded as ConvNeXt-V2sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named ConvNeXt V2 with OnWorks for free.
このアプリを実行するには、次の手順に従ってください。
-1。このアプリケーションをPCにダウンロードしました。
--2。ファイルマネージャーhttps://www.onworks.net/myfiles.php?username=XXXXXに必要なユーザー名を入力します。
-3。このアプリケーションをそのようなファイルマネージャにアップロードします。
-4。このWebサイトからOSOnWorksオンラインエミュレーターを起動しますが、Windowsオンラインエミュレーターの方が優れています。
-5。起動したばかりのOnWorksWindows OSから、必要なユーザー名でファイルマネージャーhttps://www.onworks.net/myfiles.php?username=XXXXXにアクセスします。
-6。アプリケーションをダウンロードしてインストールします。
-7.LinuxディストリビューションソフトウェアリポジトリからWineをダウンロードします。 インストールしたら、アプリをダブルクリックして、Wineで実行できます。 また、人気のあるWindowsプログラムやゲームのインストールに役立つWine上の豪華なインターフェイスであるPlayOnLinuxを試すこともできます。
WineはLinux上でWindowsソフトウェアを実行する方法ですが、Windowsは必要ありません。 Wineは、任意のLinuxデスクトップでWindowsプログラムを直接実行できるオープンソースのWindows互換性レイヤーです。 基本的に、Wineは、実際にWindowsを必要とせずに、これらすべてのWindowsアプリケーションを実行できるように、十分な数のWindowsを最初から再実装しようとしています。
スクリーンショット:
コンブネクスト V2
説明:
ConvNeXt V2 is an evolution of the ConvNeXt architecture that co-designs convolutional networks alongside self-supervised learning. The V2 version introduces a fully convolutional masked autoencoder (FCMAE) framework where parts of the image are masked and the network reconstructs the missing content, marrying convolutional inductive bias with powerful pretraining. A key innovation is a new Global Response Normalization (GRN) layer added to the ConvNeXt backbone, which enhances feature competition across channels. The result is a convnet that competes strongly with transformer architectures on recognition benchmarks while being efficient and hardware-friendly. The repository provides official PyTorch implementations for multiple model sizes (Atto, Femto, Pico, up through Huge), conversion from JAX weights, code for pretraining/fine-tuning, and pretrained checkpoints. It supports both self-supervised pretraining and supervised fine-tuning.
オプション
- Fully convolutional masked autoencoder pretraining (FCMAE)
- Global Response Normalization (GRN) to improve channel competition
- Multiple model sizes (Atto, Femto, Pico, Tiny, Base, Large, Huge)
- Support for self-supervised and supervised learning pipelines
- Pretrained checkpoints (converted from JAX) and PyTorch implementation
- Training/fine-tuning utilities and code for both pretrain and eval
プログラミング言語
Python
カテゴリー
This is an application that can also be fetched from https://sourceforge.net/projects/convnext-v2.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.