This is the Windows app named nanoGPT whose latest release can be downloaded as nanoGPTsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named nanoGPT with OnWorks for free.
このアプリを実行するには、次の手順に従ってください。
-1。このアプリケーションをPCにダウンロードしました。
--2。ファイルマネージャーhttps://www.onworks.net/myfiles.php?username=XXXXXに必要なユーザー名を入力します。
-3。このアプリケーションをそのようなファイルマネージャにアップロードします。
-4。このWebサイトからOSOnWorksオンラインエミュレーターを起動しますが、Windowsオンラインエミュレーターの方が優れています。
-5。起動したばかりのOnWorksWindows OSから、必要なユーザー名でファイルマネージャーhttps://www.onworks.net/myfiles.php?username=XXXXXにアクセスします。
-6。アプリケーションをダウンロードしてインストールします。
-7.LinuxディストリビューションソフトウェアリポジトリからWineをダウンロードします。 インストールしたら、アプリをダブルクリックして、Wineで実行できます。 また、人気のあるWindowsプログラムやゲームのインストールに役立つWine上の豪華なインターフェイスであるPlayOnLinuxを試すこともできます。
WineはLinux上でWindowsソフトウェアを実行する方法ですが、Windowsは必要ありません。 Wineは、任意のLinuxデスクトップでWindowsプログラムを直接実行できるオープンソースのWindows互換性レイヤーです。 基本的に、Wineは、実際にWindowsを必要とせずに、これらすべてのWindowsアプリケーションを実行できるように、十分な数のWindowsを最初から再実装しようとしています。
スクリーンショット:
ナノGPT
説明:
NanoGPT is a minimalistic yet powerful reimplementation of GPT-style transformers created by Andrej Karpathy for educational and research use. It distills the GPT architecture into a few hundred lines of Python code, making it far easier to understand than large, production-scale implementations. The repo is organized with a training pipeline (dataset preprocessing, model definition, optimizer, training loop) and inference script so you can train a small GPT on text datasets like Shakespeare or custom corpora. It emphasizes readability and clarity: the training loop is cleanly written, and the code avoids heavy abstractions, letting students follow the architecture step by step. While simple, it can still train non-trivial models on modern GPUs and generate coherent text. The project has become widely used in tutorials, courses, and experiments for people learning how transformers work under the hood.
オプション
- Compact GPT transformer implementation in plain Python/PyTorch
- Data preprocessing pipeline for text datasets (e.g. Shakespeare)
- Training loop with clear optimizer and scheduler setup
- Inference script for text generation after training
- Readable, educational codebase (few hundred lines)
- Supports running on modern GPUs for small to mid-sized models
プログラミング言語
Python
カテゴリー
This is an application that can also be fetched from https://sourceforge.net/projects/nanogpt.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.