Jraph download for Linux

This is the Linux app named Jraph whose latest release can be downloaded as v0.0.6.dev0sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

 
 

Download and run online this app named Jraph with OnWorks for free.

ປະຕິບັດຕາມຄໍາແນະນໍາເຫຼົ່ານີ້ເພື່ອດໍາເນີນການ app ນີ້:

- 1. ດາວ​ໂຫຼດ​ຄໍາ​ຮ້ອງ​ສະ​ຫມັກ​ນີ້​ໃນ PC ຂອງ​ທ່ານ​.

- 2. ໃສ່ໃນຕົວຈັດການໄຟລ໌ຂອງພວກເຮົາ https://www.onworks.net/myfiles.php?username=XXXXX ດ້ວຍຊື່ຜູ້ໃຊ້ທີ່ທ່ານຕ້ອງການ.

- 3. ອັບໂຫລດແອັບພລິເຄຊັນນີ້ຢູ່ໃນຕົວຈັດການໄຟລ໌ດັ່ງກ່າວ.

- 4. ເລີ່ມ OnWorks Linux ອອນລາຍ ຫຼື Windows online emulator ຫຼື MACOS online emulator ຈາກເວັບໄຊທ໌ນີ້.

- 5. ຈາກ OnWorks Linux OS ທີ່ເຈົ້າຫາກໍ່ເລີ່ມຕົ້ນ, ໄປທີ່ຕົວຈັດການໄຟລ໌ຂອງພວກເຮົາ https://www.onworks.net/myfiles.php?username=XXXXX ດ້ວຍຊື່ຜູ້ໃຊ້ທີ່ທ່ານຕ້ອງການ.

- 6. ດາວນ໌ໂຫລດຄໍາຮ້ອງສະຫມັກ, ຕິດຕັ້ງມັນແລະດໍາເນີນການ.

ພາບຫນ້າຈໍ:


ຈູ


DESCRIPTION:

Jraph (pronounced “giraffe”) is a lightweight JAX library developed by Google DeepMind for building and experimenting with graph neural networks (GNNs). It provides an efficient and flexible framework for representing, manipulating, and training models on graph-structured data. The core of Jraph is the GraphsTuple data structure, which enables users to define graphs with arbitrary node, edge, and global attributes, and to batch variable-sized graphs efficiently for JAX’s just-in-time compilation. The library includes a comprehensive set of utilities for batching, padding, masking, and partitioning graph data, making it ideal for distributed and large-scale GNN experiments. Jraph also comes with a model zoo—a collection of forkable reference implementations of common message-passing GNN architectures, such as Graph Networks, Graph Convolutional Networks, and Graph Attention Networks.



ຄຸນ​ລັກ​ສະ​ນະ

  • Lightweight GraphsTuple data structure for flexible graph representation
  • Distributed message-passing support for massive graphs across multiple devices
  • Utilities for batching, masking, and padding to handle variable-sized graphs
  • Modular model zoo of reusable graph neural network architectures
  • Educational Colab tutorials and large-scale dataset examples (e.g., OGBG-MOLPCBA)
  • Fully JAX-compatible for jit compilation, pmap parallelization, and scalability


ພາສາການຂຽນໂປຣແກຣມ

Python


ປະເພດ

ຫໍສະໝຸດ Neural Network

This is an application that can also be fetched from https://sourceforge.net/projects/jraph.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.



ລ່າສຸດ Linux ແລະ Windows ໂຄງການອອນໄລນ໌


ໝວດໝູ່ເພື່ອດາວໂຫລດຊອບແວ ແລະໂປຣແກຣມສຳລັບ Windows ແລະ Linux