This is the Windows app named Transformer Engine whose latest release can be downloaded as v2.4sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Transformer Engine with OnWorks for free.
Follow these instructions in order to run this app:
- 1. Downloaded this application in your PC.
- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 3. Upload this application in such filemanager.
- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.
- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 6. Download the application and install it.
- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.
Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.
SCREENSHOTS
Ad
Transformer Engine
DESCRIPTION
Transformer Engine (TE) is a library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper GPUs, to provide better performance with lower memory utilization in both training and inference. TE provides a collection of highly optimized building blocks for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your framework-specific code. TE also includes a framework-agnostic C++ API that can be integrated with other deep-learning libraries to enable FP8 support for Transformers. As the number of parameters in Transformer models continues to grow, training and inference for architectures such as BERT, GPT, and T5 become very memory and compute-intensive. Most deep learning frameworks train with FP32 by default. This is not essential, however, to achieve full accuracy for many deep learning models.
Features
- Easy-to-use modules for building Transformer layers with FP8 support
- Optimizations (e.g. fused kernels) for Transformer models
- Support for FP8 on NVIDIA Hopper and NVIDIA Ada GPUs
- Support for optimizations across all precisions (FP16, BF16) on NVIDIA Ampere GPU architecture generations and later
- Documentation available
- Examples included
Programming Language
Python
Categories
This is an application that can also be fetched from https://sourceforge.net/projects/transformer-engine.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.