This is the Windows app named nanoGPT whose latest release can be downloaded as nanoGPTsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named nanoGPT with OnWorks for free.
ഈ ആപ്പ് പ്രവർത്തിപ്പിക്കുന്നതിന് ഈ നിർദ്ദേശങ്ങൾ പാലിക്കുക:
- 1. നിങ്ങളുടെ പിസിയിൽ ഈ ആപ്ലിക്കേഷൻ ഡൗൺലോഡ് ചെയ്തു.
- 2. ഞങ്ങളുടെ ഫയൽ മാനേജറിൽ https://www.onworks.net/myfiles.php?username=XXXXX എന്നതിൽ നിങ്ങൾക്ക് ആവശ്യമുള്ള ഉപയോക്തൃനാമം നൽകുക.
- 3. അത്തരം ഫയൽമാനേജറിൽ ഈ ആപ്ലിക്കേഷൻ അപ്ലോഡ് ചെയ്യുക.
- 4. ഈ വെബ്സൈറ്റിൽ നിന്ന് ഏതെങ്കിലും OS OnWorks ഓൺലൈൻ എമുലേറ്റർ ആരംഭിക്കുക, എന്നാൽ മികച്ച Windows ഓൺലൈൻ എമുലേറ്റർ.
- 5. നിങ്ങൾ ഇപ്പോൾ ആരംഭിച്ച OnWorks Windows OS-ൽ നിന്ന്, നിങ്ങൾക്ക് ആവശ്യമുള്ള ഉപയോക്തൃനാമത്തോടുകൂടിയ ഞങ്ങളുടെ ഫയൽ മാനേജർ https://www.onworks.net/myfiles.php?username=XXXXX എന്നതിലേക്ക് പോകുക.
- 6. ആപ്ലിക്കേഷൻ ഡൗൺലോഡ് ചെയ്ത് ഇൻസ്റ്റാൾ ചെയ്യുക.
- 7. നിങ്ങളുടെ Linux വിതരണ സോഫ്റ്റ്വെയർ ശേഖരണങ്ങളിൽ നിന്ന് വൈൻ ഡൗൺലോഡ് ചെയ്യുക. ഇൻസ്റ്റാൾ ചെയ്തുകഴിഞ്ഞാൽ, വൈൻ ഉപയോഗിച്ച് അവ പ്രവർത്തിപ്പിക്കുന്നതിന് നിങ്ങൾക്ക് ആപ്പിൽ ഡബിൾ ക്ലിക്ക് ചെയ്യാം. ജനപ്രിയ വിൻഡോസ് പ്രോഗ്രാമുകളും ഗെയിമുകളും ഇൻസ്റ്റാൾ ചെയ്യാൻ സഹായിക്കുന്ന വൈനിലൂടെയുള്ള ഫാൻസി ഇന്റർഫേസായ PlayOnLinux നിങ്ങൾക്ക് പരീക്ഷിക്കാവുന്നതാണ്.
ലിനക്സിൽ വിൻഡോസ് സോഫ്റ്റ്വെയർ പ്രവർത്തിപ്പിക്കാനുള്ള ഒരു മാർഗമാണ് വൈൻ, എന്നാൽ വിൻഡോസ് ആവശ്യമില്ല. ഏത് ലിനക്സ് ഡെസ്ക്ടോപ്പിലും നേരിട്ട് വിൻഡോസ് പ്രോഗ്രാമുകൾ പ്രവർത്തിപ്പിക്കാൻ കഴിയുന്ന ഒരു ഓപ്പൺ സോഴ്സ് വിൻഡോസ് കോംപാറ്റിബിലിറ്റി ലെയറാണ് വൈൻ. അടിസ്ഥാനപരമായി, വൈൻ ആദ്യം മുതൽ ആവശ്യത്തിന് വിൻഡോസ് വീണ്ടും നടപ്പിലാക്കാൻ ശ്രമിക്കുന്നു, അതുവഴി യഥാർത്ഥത്തിൽ വിൻഡോസ് ആവശ്യമില്ലാതെ തന്നെ എല്ലാ വിൻഡോസ് ആപ്ലിക്കേഷനുകളും പ്രവർത്തിപ്പിക്കാൻ കഴിയും.
സ്ക്രീൻഷോട്ടുകൾ:
നാനോജിപിടി
വിവരണം:
NanoGPT is a minimalistic yet powerful reimplementation of GPT-style transformers created by Andrej Karpathy for educational and research use. It distills the GPT architecture into a few hundred lines of Python code, making it far easier to understand than large, production-scale implementations. The repo is organized with a training pipeline (dataset preprocessing, model definition, optimizer, training loop) and inference script so you can train a small GPT on text datasets like Shakespeare or custom corpora. It emphasizes readability and clarity: the training loop is cleanly written, and the code avoids heavy abstractions, letting students follow the architecture step by step. While simple, it can still train non-trivial models on modern GPUs and generate coherent text. The project has become widely used in tutorials, courses, and experiments for people learning how transformers work under the hood.
സവിശേഷതകൾ
- Compact GPT transformer implementation in plain Python/PyTorch
- Data preprocessing pipeline for text datasets (e.g. Shakespeare)
- Training loop with clear optimizer and scheduler setup
- Inference script for text generation after training
- Readable, educational codebase (few hundred lines)
- Supports running on modern GPUs for small to mid-sized models
പ്രോഗ്രാമിംഗ് ഭാഷ
പൈത്തൺ
Categories
This is an application that can also be fetched from https://sourceforge.net/projects/nanogpt.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.