This is the Linux app named PixelCNN whose latest release can be downloaded as pixel-cnnsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named PixelCNN with OnWorks for free.
Postępuj zgodnie z tymi instrukcjami, aby uruchomić tę aplikację:
- 1. Pobrałem tę aplikację na swój komputer.
- 2. Wpisz w naszym menedżerze plików https://www.onworks.net/myfiles.php?username=XXXXX z wybraną nazwą użytkownika.
- 3. Prześlij tę aplikację w takim menedżerze plików.
- 4. Uruchom emulator online OnWorks Linux lub Windows online lub emulator online MACOS z tej witryny.
- 5. W systemie operacyjnym OnWorks Linux, który właśnie uruchomiłeś, przejdź do naszego menedżera plików https://www.onworks.net/myfiles.php?username=XXXXX z wybraną nazwą użytkownika.
- 6. Pobierz aplikację, zainstaluj ją i uruchom.
ZDJĘCIA EKRANU:
PixelCNN
OPIS:
PixelCNN is the official implementation from OpenAI of the autoregressive generative model described in the paper Conditional Image Generation with PixelCNN Decoders. It provides code for training and evaluating PixelCNN models on image datasets, focusing on conditional image modeling where pixels are generated sequentially based on the values of previously generated pixels. The repository demonstrates how to apply masked convolutions to enforce autoregressive dependencies and achieve tractable likelihood-based training. It also includes scripts for reproducing key experimental results from the paper, such as conditional sampling on datasets like CIFAR-10. The project serves as both a research reference and a practical framework for experimenting with autoregressive generative models. Although archived, PixelCNN has influenced a wide range of later work in generative modeling, including advancements in image transformers and diffusion models.
Funkcjonalności
- Official reference implementation of the PixelCNN model
- Supports conditional image generation with autoregressive decoding
- Uses masked convolutions to maintain causal dependencies
- Training and evaluation scripts for reproducibility
- Example experiments on standard image datasets like CIFAR-10
- Provides a foundation for studying likelihood-based generative models
Język programowania
Python
Kategorie
This is an application that can also be fetched from https://sourceforge.net/projects/pixelcnn.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.