This is the Windows app named CausalImpact whose latest release can be downloaded as CausalImpactsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named CausalImpact with OnWorks for free.
Siga estas instruções para executar este aplicativo:
- 1. Baixe este aplicativo em seu PC.
- 2. Entre em nosso gerenciador de arquivos https://www.onworks.net/myfiles.php?username=XXXXX com o nome de usuário que você deseja.
- 3. Carregue este aplicativo em tal gerenciador de arquivos.
- 4. Inicie qualquer emulador on-line OS OnWorks a partir deste site, mas um emulador on-line melhor do Windows.
- 5. No sistema operacional OnWorks Windows que você acabou de iniciar, acesse nosso gerenciador de arquivos https://www.onworks.net/myfiles.php?username=XXXXX com o nome de usuário que deseja.
- 6. Baixe o aplicativo e instale-o.
- 7. Baixe o Wine de seus repositórios de software de distribuição Linux. Depois de instalado, você pode clicar duas vezes no aplicativo para executá-lo com o Wine. Você também pode experimentar o PlayOnLinux, uma interface sofisticada do Wine que o ajudará a instalar programas e jogos populares do Windows.
Wine é uma forma de executar software Windows no Linux, mas sem a necessidade de Windows. Wine é uma camada de compatibilidade do Windows de código aberto que pode executar programas do Windows diretamente em qualquer desktop Linux. Essencialmente, o Wine está tentando reimplementar o suficiente do Windows do zero para que possa executar todos os aplicativos do Windows sem realmente precisar do Windows.
CAPTURAS DE TELA:
Impacto Causal
DESCRIÇÃO:
The CausalImpact repository houses an R package that implements causal inference in time series using Bayesian structural time series models. Its goal is to estimate the effect of an intervention (e.g. a marketing campaign, policy change) on a time series outcome by predicting what would have happened in a counterfactual “no intervention” world. The package requires as input a response time series plus one or more control (covariate) time series that are assumed unaffected by the intervention, and it divides the time horizon into “pre-intervention” and “post-intervention” periods. It uses Bayesian modeling to fit a structural time series to the pre-period and extrapolate a counterfactual prediction for the post period, then compares observed vs predicted to infer the causal effect. The package supports plotting, summary tables, and verbal narratives for interpretive reports.
Recursos
- Bayesian structural time series model to infer counterfactuals
- Analysis of intervention effects on time series (pre/post comparison)
- Support for multiple covariate (control) time series
- Automated plotting, summary tables, and narrative output
- Diagnostics and customization of priors and model options
- Strong documentation and example workflows for real use
Linguagem de Programação
R
Categorias
This is an application that can also be fetched from https://sourceforge.net/projects/causalimpact.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.