Consistency Models download for Windows

This is the Windows app named Consistency Models whose latest release can be downloaded as consistency_modelssourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

 
 

Download and run online this app named Consistency Models with OnWorks for free.

Следуйте этим инструкциям, чтобы запустить это приложение:

- 1. Загрузил это приложение на свой компьютер.

- 2. Введите в нашем файловом менеджере https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.

- 3. Загрузите это приложение в такой файловый менеджер.

- 4. Запустите любой онлайн-эмулятор OS OnWorks с этого сайта, но лучше онлайн-эмулятор Windows.

- 5. В только что запущенной ОС Windows OnWorks перейдите в наш файловый менеджер https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.

- 6. Скачайте приложение и установите его.

- 7. Загрузите Wine из репозиториев программного обеспечения вашего дистрибутива Linux. После установки вы можете дважды щелкнуть приложение, чтобы запустить его с помощью Wine. Вы также можете попробовать PlayOnLinux, необычный интерфейс поверх Wine, который поможет вам установить популярные программы и игры для Windows.

Wine - это способ запустить программное обеспечение Windows в Linux, но без Windows. Wine - это уровень совместимости с Windows с открытым исходным кодом, который может запускать программы Windows непосредственно на любом рабочем столе Linux. По сути, Wine пытается заново реализовать Windows с нуля, чтобы можно было запускать все эти Windows-приложения, фактически не нуждаясь в Windows.

СКРИНШОТЫ:


Модели согласованности


ОПИСАНИЕ:

consistency_models is the repository for Consistency Models, a new family of generative models introduced by OpenAI that aim to generate high-quality samples by mapping noise directly into data — circumventing the need for lengthy diffusion chains. It builds on and extends diffusion model frameworks (e.g. based on the guided-diffusion codebase), adding techniques like consistency distillation and consistency training to enable fast, often one-step, sample generation. The repo is implemented in PyTorch and includes support for large-scale experiments on datasets like ImageNet-64 and LSUN variants. It also contains checkpointed models, evaluation scripts, and variants of sampling / editing algorithms described in the paper. Because consistency models reduce the number of inference steps, they are promising for real-time or low-latency generative systems.



Особенности

  • Direct noise → data mapping for one-step or few-step generation
  • Implementation of consistency distillation and consistency training
  • Support for sampling and editing algorithms (image editing, interpolation)
  • Checkpoints and evaluation scripts for datasets like ImageNet and LSUN
  • Modular PyTorch architecture built over earlier diffusion frameworks
  • Model cards and documentation for intended use, limitations, and benchmarking


Язык программирования

Питон


Категории

Искусственный интеллект

This is an application that can also be fetched from https://sourceforge.net/projects/consistency-models.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.



Новейшие онлайн-программы для Linux и Windows


Категории для загрузки Программное обеспечение и программы для Windows и Linux