LLM Course download for Windows

This is the Windows app named LLM Course whose latest release can be downloaded as llm-coursesourcecode.zip. It can be run online in the free hosting provider OnWorks for workstations.

 
 

Download and run online this app named LLM Course with OnWorks for free.

Follow these instructions in order to run this app:

- 1. Downloaded this application in your PC.

- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.

- 3. Upload this application in such filemanager.

- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.

- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.

- 6. Download the application and install it.

- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.

Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.

SCREENSHOTS:


LLM Course


DESCRIPTION:

LLM Course is a hands-on, notebook-driven path for learning how large language models work in practice, from data curation to training, fine-tuning, evaluating, and deploying. It emphasizes reproducible experiments: each step is demonstrated with runnable code, clear dependencies, and references to commonly used open-source models and libraries. Learners get exposure to multiple adaptation strategies—LoRA/QLoRA, instruction fine-tuning, and alignment techniques—so they can choose approaches that fit their hardware and budgets. The materials also cover inference optimization and quantization to make serving LLMs feasible on commodity GPUs or even CPUs, which is crucial for side projects and startups. Evaluation is treated as a first-class topic, with examples of automatic and human-in-the-loop methods to catch regressions and verify quality beyond simple loss values. By the end, students have a mental model and a practical toolkit for iterating on datasets, training configs, etc.



Features

  • End-to-end notebooks covering data prep, training, fine-tuning, and serving
  • Practical focus on LoRA/QLoRA, instruction tuning, and alignment workflows
  • Guidance for resource-constrained hardware plus quantization techniques
  • Reproducible setups with pinned dependencies and clear configs
  • Evaluation notebooks for automated metrics and human review loops
  • Tips for packaging, inference optimization, and lightweight deployment


Programming Language

JavaScript


Categories

Education, Large Language Models (LLM)

This is an application that can also be fetched from https://sourceforge.net/projects/llm-course.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.



Latest Linux & Windows online programs


Categories to download Software & Programs for Windows & Linux