LM Human Preferences download for Windows

This is the Windows app named LM Human Preferences whose latest release can be downloaded as lm-human-preferencessourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

 
 

Download and run online this app named LM Human Preferences with OnWorks for free.

Follow these instructions in order to run this app:

- 1. Downloaded this application in your PC.

- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.

- 3. Upload this application in such filemanager.

- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.

- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.

- 6. Download the application and install it.

- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.

Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.

SCREENSHOTS:


LM Human Preferences


DESCRIPTION:

lm-human-preferences is the official OpenAI codebase that implements the method from the paper Fine-Tuning Language Models from Human Preferences. Its purpose is to show how to align language models with human judgments by training a reward model from human comparisons and then fine-tuning a policy model using that reward signal. The repository includes scripts to train the reward model (learning to rank or score pairs of outputs), and to fine-tune a policy (a language model) with reinforcement learning (or related techniques) guided by that reward model. The code is provided “as is” and explicitly says it may no longer run out-of-the-box due to dependencies or dataset migrations. It was tested on the smallest GPT-2 (124M parameters) under a specific environment (TensorFlow 1.x, specific CUDA / cuDNN combinations). It includes utilities for launching experiments, sampling from policies, and simple experiment orchestration.



Features

  • Training a reward model from human preference comparisons
  • Fine-tuning a policy (language model) guided by the reward model
  • Sampling / inference utilities to generate outputs from the trained policy
  • Experiment orchestration (launch.py) to combine stages (reward + policy)
  • Label handling and mapping from human comparisons to scalar reward signals
  • Support for small GPT-2 (124M) model as reference environment


Programming Language

Python


Categories

Education

This is an application that can also be fetched from https://sourceforge.net/projects/lm-human-preferences.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.



Latest Linux & Windows online programs


Categories to download Software & Programs for Windows & Linux