Theseus download for Windows

This is the Windows app named Theseus whose latest release can be downloaded as 0.2.2sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

 
 

Download and run online this app named Theseus with OnWorks for free.

ทำตามคำแนะนำเหล่านี้เพื่อเรียกใช้แอปนี้:

- 1. ดาวน์โหลดแอปพลิเคชั่นนี้ในพีซีของคุณ

- 2. เข้าไปที่ file manager https://www.onworks.net/myfiles.php?username=XXXXX ด้วยชื่อผู้ใช้ที่คุณต้องการ

- 3. อัปโหลดแอปพลิเคชันนี้ในตัวจัดการไฟล์ดังกล่าว

- 4. เริ่มโปรแกรมจำลองออนไลน์ของ OS OnWorks จากเว็บไซต์นี้ แต่โปรแกรมจำลองออนไลน์ของ Windows ที่ดีกว่า

- 5. จากระบบปฏิบัติการ Windows ของ OnWorks ที่คุณเพิ่งเริ่มต้น ไปที่ตัวจัดการไฟล์ของเรา https://www.onworks.net/myfiles.php?username=XXXXX พร้อมชื่อผู้ใช้ที่คุณต้องการ

- 6. ดาวน์โหลดแอปพลิเคชั่นและติดตั้ง

- 7. ดาวน์โหลดไวน์จากที่เก็บซอฟต์แวร์ลีนุกซ์ดิสทริบิวชันของคุณ เมื่อติดตั้งแล้ว คุณสามารถดับเบิลคลิกที่แอปเพื่อเรียกใช้แอปด้วย Wine คุณยังสามารถลองใช้ PlayOnLinux ซึ่งเป็นอินเทอร์เฟซแฟนซีบน Wine ที่จะช่วยคุณติดตั้งโปรแกรมและเกมยอดนิยมของ Windows

ไวน์เป็นวิธีเรียกใช้ซอฟต์แวร์ Windows บน Linux แต่ไม่จำเป็นต้องใช้ Windows Wine เป็นเลเยอร์ความเข้ากันได้ของ Windows แบบโอเพ่นซอร์สที่สามารถเรียกใช้โปรแกรม Windows ได้โดยตรงบนเดสก์ท็อป Linux โดยพื้นฐานแล้ว Wine พยายามนำ Windows กลับมาใช้ใหม่ให้เพียงพอตั้งแต่เริ่มต้น เพื่อให้สามารถเรียกใช้แอปพลิเคชัน Windows เหล่านั้นทั้งหมดโดยไม่จำเป็นต้องใช้ Windows จริงๆ

ภาพหน้าจอ:


เธเซอุส


รายละเอียด:

Theseus is a library for differentiable nonlinear optimization that lets you embed solvers like Gauss-Newton or Levenberg–Marquardt inside PyTorch models. Problems are expressed as factor graphs with variables on manifolds (e.g., SE(3), SO(3)), so classical robotics and vision tasks—bundle adjustment, pose graph optimization, hand–eye calibration—can be written succinctly and solved efficiently. Because solves are differentiable, you can backpropagate through optimization to learn cost weights, feature extractors, or initialization networks end-to-end. The implementation supports batched optimization on GPU, robust losses, damping strategies, and custom factors, making it practical for real-time systems. Helper packages provide geometry primitives and utilities for composing priors, relative constraints, and measurement models. Theseus bridges the gap between classical optimization and deep learning, enabling hybrid systems that learn components.



คุณสมบัติ

  • Differentiable Gauss-Newton and Levenberg–Marquardt solvers in PyTorch
  • Factor-graph API with manifold variables like SE(3) and SO(3)
  • Batched, GPU-accelerated solves with robust loss functions
  • Autograd support to learn costs, features, or initializations end-to-end
  • Geometry helpers and reusable factors for SLAM and bundle adjustment
  • Extensible design for custom variables, factors, and damping policies


ภาษาโปรแกรม

หลาม


หมวดหมู่

ห้องสมุด

This is an application that can also be fetched from https://sourceforge.net/projects/theseus.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.



โปรแกรมออนไลน์ Linux และ Windows ล่าสุด


หมวดหมู่ดาวน์โหลดซอฟต์แวร์และโปรแกรมสำหรับ Windows & Linux