TimeSformer download for Windows

This is the Windows app named TimeSformer whose latest release can be downloaded as TimeSformersourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

 
 

Download and run online this app named TimeSformer with OnWorks for free.

ทำตามคำแนะนำเหล่านี้เพื่อเรียกใช้แอปนี้:

- 1. ดาวน์โหลดแอปพลิเคชั่นนี้ในพีซีของคุณ

- 2. เข้าไปที่ file manager https://www.onworks.net/myfiles.php?username=XXXXX ด้วยชื่อผู้ใช้ที่คุณต้องการ

- 3. อัปโหลดแอปพลิเคชันนี้ในตัวจัดการไฟล์ดังกล่าว

- 4. เริ่มโปรแกรมจำลองออนไลน์ของ OS OnWorks จากเว็บไซต์นี้ แต่โปรแกรมจำลองออนไลน์ของ Windows ที่ดีกว่า

- 5. จากระบบปฏิบัติการ Windows ของ OnWorks ที่คุณเพิ่งเริ่มต้น ไปที่ตัวจัดการไฟล์ของเรา https://www.onworks.net/myfiles.php?username=XXXXX พร้อมชื่อผู้ใช้ที่คุณต้องการ

- 6. ดาวน์โหลดแอปพลิเคชั่นและติดตั้ง

- 7. ดาวน์โหลดไวน์จากที่เก็บซอฟต์แวร์ลีนุกซ์ดิสทริบิวชันของคุณ เมื่อติดตั้งแล้ว คุณสามารถดับเบิลคลิกที่แอปเพื่อเรียกใช้แอปด้วย Wine คุณยังสามารถลองใช้ PlayOnLinux ซึ่งเป็นอินเทอร์เฟซแฟนซีบน Wine ที่จะช่วยคุณติดตั้งโปรแกรมและเกมยอดนิยมของ Windows

ไวน์เป็นวิธีเรียกใช้ซอฟต์แวร์ Windows บน Linux แต่ไม่จำเป็นต้องใช้ Windows Wine เป็นเลเยอร์ความเข้ากันได้ของ Windows แบบโอเพ่นซอร์สที่สามารถเรียกใช้โปรแกรม Windows ได้โดยตรงบนเดสก์ท็อป Linux โดยพื้นฐานแล้ว Wine พยายามนำ Windows กลับมาใช้ใหม่ให้เพียงพอตั้งแต่เริ่มต้น เพื่อให้สามารถเรียกใช้แอปพลิเคชัน Windows เหล่านั้นทั้งหมดโดยไม่จำเป็นต้องใช้ Windows จริงๆ

ภาพหน้าจอ:


ไทม์สฟอร์เมอร์


รายละเอียด:

TimeSformer is a vision transformer architecture for video that extends the standard attention mechanism into spatiotemporal attention. The model alternates attention along spatial and temporal dimensions (or designs variants like divided attention) so that it can capture both appearance and motion cues in video. Because the attention is global across frames, TimeSformer can reason about dependencies across long time spans, not just local neighborhoods. The official implementation in PyTorch provides configurations, pretrained models, and training scripts that make it straightforward to evaluate or fine-tune on video datasets. TimeSformer was influential in showing that pure transformer architectures—without convolutional backbones—can perform strongly on video classification tasks. Its flexible attention design allows experimenting with different factoring (spatial-then-temporal, joint, etc.) to trade off compute, memory, and accuracy.



คุณสมบัติ

  • Spatiotemporal transformer attention for video modeling
  • Variants: divided spatial/temporal attention and joint attention schemas
  • PyTorch reference implementation with pretrained weights and scripts
  • Ability to reason about long-range temporal dependencies globally
  • Configurable parameters for patch size, frames, embedding dimension, and head count
  • Support for fine-tuning across video classification and recognition benchmarks


ภาษาโปรแกรม

หลาม


หมวดหมู่

Video, AI Models

This is an application that can also be fetched from https://sourceforge.net/projects/timesformer.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.



โปรแกรมออนไลน์ Linux และ Windows ล่าสุด


หมวดหมู่ดาวน์โหลดซอฟต์แวร์และโปรแกรมสำหรับ Windows & Linux