This is the Linux app named Mixup-CIFAR10 whose latest release can be downloaded as mixup-cifar10sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Mixup-CIFAR10 with OnWorks for free.
Дотримуйтесь цих інструкцій, щоб запустити цю програму:
- 1. Завантажив цю програму на свій ПК.
- 2. Введіть у наш файловий менеджер https://www.onworks.net/myfiles.php?username=XXXXX із потрібним ім'ям користувача.
- 3. Завантажте цю програму в такий файловий менеджер.
- 4. Запустіть онлайн-емулятор OnWorks Linux або Windows або онлайн-емулятор MACOS з цього веб-сайту.
- 5. З ОС OnWorks Linux, яку ви щойно запустили, перейдіть до нашого файлового менеджера https://www.onworks.net/myfiles.php?username=XXXXX з потрібним іменем користувача.
- 6. Завантажте програму, встановіть її та запустіть.
Mixup-CIFAR10
ОПИС:
mixup-cifar10 is the official PyTorch implementation of “mixup: Beyond Empirical Risk Minimization” (Zhang et al., ICLR 2018), a foundational paper introducing mixup, a simple yet powerful data augmentation technique for training deep neural networks. The core idea of mixup is to generate synthetic training examples by taking convex combinations of pairs of input samples and their labels. By interpolating both data and labels, the model learns smoother decision boundaries and becomes more robust to noise and adversarial examples. This repository implements mixup for the CIFAR-10 dataset, showcasing its effectiveness in improving generalization, stability, and calibration of neural networks. The approach acts as a regularizer, encouraging linear behavior in the feature space between samples, which helps reduce overfitting and enhance performance on unseen data.
Функції
- Simple, easily extensible codebase for research and experimentation
- Based on the original ICLR 2018 publication results
- Compatible with PyTorch and GPU-accelerated training
- Demonstrates significant gains in generalization and robustness
- Trains neural networks on convex combinations of inputs and labels
- Implementation of mixup data augmentation for CIFAR-10 classification
Мова програмування
Python
Категорії
This is an application that can also be fetched from https://sourceforge.net/projects/mixup-cifar10.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.