This is the Windows app named DINOv3 whose latest release can be downloaded as dinov3sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named DINOv3 with OnWorks for free.
Làm theo các hướng dẫn sau để chạy ứng dụng này:
- 1. Đã tải ứng dụng này xuống PC của bạn.
- 2. Nhập vào trình quản lý tệp của chúng tôi https://www.onworks.net/myfiles.php?username=XXXXX với tên người dùng mà bạn muốn.
- 3. Tải lên ứng dụng này trong trình quản lý tệp như vậy.
- 4. Khởi động bất kỳ trình giả lập trực tuyến OS OnWorks nào từ trang web này, nhưng trình giả lập trực tuyến Windows tốt hơn.
- 5. Từ Hệ điều hành Windows OnWorks bạn vừa khởi động, hãy truy cập trình quản lý tệp của chúng tôi https://www.onworks.net/myfiles.php?username=XXXXX với tên người dùng mà bạn muốn.
- 6. Tải xuống ứng dụng và cài đặt nó.
- 7. Tải xuống Wine từ kho phần mềm phân phối Linux của bạn. Sau khi cài đặt, bạn có thể nhấp đúp vào ứng dụng để chạy chúng với Wine. Bạn cũng có thể thử PlayOnLinux, một giao diện đẹp mắt trên Wine sẽ giúp bạn cài đặt các chương trình và trò chơi phổ biến của Windows.
Wine là một cách để chạy phần mềm Windows trên Linux, nhưng không cần Windows. Wine là một lớp tương thích Windows mã nguồn mở có thể chạy các chương trình Windows trực tiếp trên bất kỳ máy tính để bàn Linux nào. Về cơ bản, Wine đang cố gắng triển khai lại đủ Windows từ đầu để nó có thể chạy tất cả các ứng dụng Windows đó mà không thực sự cần đến Windows.
MÀN HÌNH:
DINOv3
SỰ MIÊU TẢ:
DINOv3 is the third-generation iteration of Meta’s self-supervised visual representation learning framework, building upon the ideas from DINO and DINOv2. It continues the paradigm of learning strong image representations without labels using teacher–student distillation, but introduces a simplified and more scalable training recipe that performs well across datasets and architectures. DINOv3 removes the need for complex augmentations or momentum encoders, streamlining the pipeline while maintaining or improving feature quality. The model supports multiple backbone architectures, including Vision Transformers (ViT), and can handle larger image resolutions with improved stability during training. The learned embeddings generalize robustly across tasks like classification, retrieval, and segmentation without fine-tuning, showing state-of-the-art transfer performance among self-supervised models.
Tính năng
- Simplified self-supervised learning framework with improved scalability
- Teacher–student distillation without labeled data or heavy augmentation
- Support for multiple backbones including Vision Transformers
- Stable high-resolution training and distributed multi-GPU setup
- High transferability to classification, retrieval, and segmentation tasks
- Ready-to-use scripts for training, feature extraction, and benchmarking
Ngôn ngữ lập trình
Python
Danh Mục
This is an application that can also be fetched from https://sourceforge.net/projects/dinov3.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.