This is the Windows app named Higher whose latest release can be downloaded as higherv0.2.1sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Higher with OnWorks for free.
请按照以下说明运行此应用程序:
- 1. 在您的 PC 中下载此应用程序。
- 2. 在我们的文件管理器 https://www.onworks.net/myfiles.php?username=XXXXX 中输入您想要的用户名。
- 3. 在这样的文件管理器中上传这个应用程序。
- 4. 从本网站启动任何 OS OnWorks 在线模拟器,但更好的 Windows 在线模拟器。
- 5. 从您刚刚启动的 OnWorks Windows 操作系统,使用您想要的用户名转到我们的文件管理器 https://www.onworks.net/myfiles.php?username=XXXXX。
- 6. 下载应用程序并安装。
- 7. 从您的 Linux 发行版软件存储库下载 Wine。 安装后,您可以双击该应用程序以使用 Wine 运行它们。 您还可以尝试 PlayOnLinux,这是 Wine 上的一个花哨界面,可帮助您安装流行的 Windows 程序和游戏。
Wine 是一种在 Linux 上运行 Windows 软件的方法,但不需要 Windows。 Wine 是一个开源的 Windows 兼容层,可以直接在任何 Linux 桌面上运行 Windows 程序。 本质上,Wine 试图从头开始重新实现足够多的 Windows,以便它可以运行所有这些 Windows 应用程序,而实际上不需要 Windows。
SCREENSHOTS
Ad
更高
商品描述
higher is a specialized library designed to extend PyTorch’s capabilities by enabling higher-order differentiation and meta-learning through differentiable optimization loops. It allows developers and researchers to compute gradients through entire optimization processes, which is essential for tasks like meta-learning, hyperparameter optimization, and model adaptation. The library introduces utilities that convert standard torch.nn.Module instances into “stateless” functional forms, so parameter updates can be treated as differentiable operations. It also provides differentiable implementations of common optimizers like SGD and Adam, making it possible to backpropagate through an arbitrary number of inner-loop optimization steps. By offering a clear and flexible interface, higher simplifies building complex learning algorithms that require gradient tracking across multiple update levels. Its design ensures compatibility with existing PyTorch models.
功能
- Enables differentiable inner-loop optimization and gradient tracking through updates
- Converts torch.nn.Module models into functional, stateless forms for meta-learning
- Provides differentiable versions of standard optimizers such as Adam and SGD
- Allows unrolled optimization for higher-order gradient computation
- Easily integrates into existing PyTorch workflows with minimal modification
- Supports custom differentiable optimizers via registration and subclassing
程式语言
Python
分类
This is an application that can also be fetched from https://sourceforge.net/projects/higher.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.