This is the Linux app named RLax whose latest release can be downloaded as RLax0.1.8sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named RLax with OnWorks for free.
请按照以下说明运行此应用程序:
- 1. 在您的 PC 中下载此应用程序。
- 2. 在我们的文件管理器 https://www.onworks.net/myfiles.php?username=XXXXX 中输入您想要的用户名。
- 3. 在这样的文件管理器中上传这个应用程序。
- 4. 从此网站启动OnWorks Linux online 或Windows online emulator 或MACOS online emulator。
- 5. 从您刚刚启动的 OnWorks Linux 操作系统,使用您想要的用户名转到我们的文件管理器 https://www.onworks.net/myfiles.php?username=XXXXX。
- 6. 下载应用程序,安装并运行。
截图:
拉克斯
描述:
RLax (pronounced “relax”) is a JAX-based library developed by Google DeepMind that provides reusable mathematical building blocks for constructing reinforcement learning (RL) agents. Rather than implementing full algorithms, RLax focuses on the core functional operations that underpin RL methods—such as computing value functions, returns, policy gradients, and loss terms—allowing researchers to flexibly assemble their own agents. It supports both on-policy and off-policy learning, as well as value-based, policy-based, and model-based approaches. RLax is fully JIT-compilable with JAX, enabling high-performance execution across CPU, GPU, and TPU backends. The library implements tools for Bellman equations, return distributions, general value functions, and policy optimization in both continuous and discrete action spaces. It integrates seamlessly with DeepMind’s Haiku (for neural network definition) and Optax (for optimization), making it a key component in modular RL pipelines.
功能
- Modular reinforcement learning primitives (values, returns, and policies)
- JAX-optimized for GPU/TPU acceleration and automatic differentiation
- Supports on-policy and off-policy learning paradigms
- Implements distributional value functions and general value functions
- Integrates with Haiku and Optax for neural network and optimization pipelines
- Comprehensive testing and examples for reproducibility and educational use
程式语言
Python、Unix 外壳
分类
This is an application that can also be fetched from https://sourceforge.net/projects/rlax.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.