This is the Windows app named Supervised Reptile whose latest release can be downloaded as supervised-reptilesourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Supervised Reptile with OnWorks for free.
请按照以下说明运行此应用程序:
- 1. 在您的 PC 中下载此应用程序。
- 2. 在我们的文件管理器 https://www.onworks.net/myfiles.php?username=XXXXX 中输入您想要的用户名。
- 3. 在这样的文件管理器中上传这个应用程序。
- 4. 从本网站启动任何 OS OnWorks 在线模拟器,但更好的 Windows 在线模拟器。
- 5. 从您刚刚启动的 OnWorks Windows 操作系统,使用您想要的用户名转到我们的文件管理器 https://www.onworks.net/myfiles.php?username=XXXXX。
- 6. 下载应用程序并安装。
- 7. 从您的 Linux 发行版软件存储库下载 Wine。 安装后,您可以双击该应用程序以使用 Wine 运行它们。 您还可以尝试 PlayOnLinux,这是 Wine 上的一个花哨界面,可帮助您安装流行的 Windows 程序和游戏。
Wine 是一种在 Linux 上运行 Windows 软件的方法,但不需要 Windows。 Wine 是一个开源的 Windows 兼容层,可以直接在任何 Linux 桌面上运行 Windows 程序。 本质上,Wine 试图从头开始重新实现足够多的 Windows,以便它可以运行所有这些 Windows 应用程序,而实际上不需要 Windows。
SCREENSHOTS
Ad
Supervised Reptile
商品描述
The supervised-reptile repository contains code associated with the paper “On First-Order Meta-Learning Algorithms”, which introduces Reptile, a meta-learning algorithm for learning model parameter initializations that adapt quickly to new tasks. The implementation here is aimed at supervised few-shot learning settings (e.g. Omniglot, Mini-ImageNet), not reinforcement learning, and includes scripts to run training and evaluation for few-shot classification. The fundamental idea is: sample a task, train on that task (inner loop), and then move the initialization parameters toward the adapted parameters (outer loop). Because Reptile is a first-order algorithm, it avoids computing second derivatives or full meta-gradients, making it computationally simpler while retaining good performance. The repo includes training scripts, dataset fetchers (Omniglot, Mini-ImageNet), and modules for defining the Reptile update logic, variables, and hyperparameters.
功能
- Implementation of the Reptile algorithm for few-shot supervised meta-learning
- Support scripts for Omniglot and Mini-ImageNet experiment setups
- First-order meta-learning (no second derivatives) for computational simplicity
- Command-line interface for hyperparameter control (shots, inner/outer loops, meta steps)
- Dataset download / preprocessing utilities (e.g. fetch_data.sh)
- Modular structure: reptile.py, variables.py, dataset modules, experiment drivers
程式语言
JavaScript
分类
This is an application that can also be fetched from https://sourceforge.net/projects/supervised-reptile.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.