This is the Windows app named Higher whose latest release can be downloaded as higherv0.2.1sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Higher with OnWorks for free.
Suivez ces instructions pour exécuter cette application :
- 1. Téléchargé cette application sur votre PC.
- 2. Entrez dans notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous voulez.
- 3. Téléchargez cette application dans ce gestionnaire de fichiers.
- 4. Démarrez n'importe quel émulateur en ligne OS OnWorks à partir de ce site Web, mais un meilleur émulateur en ligne Windows.
- 5. Depuis le système d'exploitation OnWorks Windows que vous venez de démarrer, accédez à notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous souhaitez.
- 6. Téléchargez l'application et installez-la.
- 7. Téléchargez Wine depuis les dépôts de logiciels de vos distributions Linux. Une fois installé, vous pouvez ensuite double-cliquer sur l'application pour les exécuter avec Wine. Vous pouvez également essayer PlayOnLinux, une interface sophistiquée sur Wine qui vous aidera à installer des programmes et des jeux Windows populaires.
Wine est un moyen d'exécuter un logiciel Windows sur Linux, mais sans Windows requis. Wine est une couche de compatibilité Windows open source qui peut exécuter des programmes Windows directement sur n'importe quel bureau Linux. Essentiellement, Wine essaie de ré-implémenter suffisamment de Windows à partir de zéro pour qu'il puisse exécuter toutes ces applications Windows sans avoir réellement besoin de Windows.
CAPTURES D'ÉCRAN
Ad
Meilleure performance du béton
DESCRIPTION
higher is a specialized library designed to extend PyTorch’s capabilities by enabling higher-order differentiation and meta-learning through differentiable optimization loops. It allows developers and researchers to compute gradients through entire optimization processes, which is essential for tasks like meta-learning, hyperparameter optimization, and model adaptation. The library introduces utilities that convert standard torch.nn.Module instances into “stateless” functional forms, so parameter updates can be treated as differentiable operations. It also provides differentiable implementations of common optimizers like SGD and Adam, making it possible to backpropagate through an arbitrary number of inner-loop optimization steps. By offering a clear and flexible interface, higher simplifies building complex learning algorithms that require gradient tracking across multiple update levels. Its design ensures compatibility with existing PyTorch models.
Comment ça marche
- Enables differentiable inner-loop optimization and gradient tracking through updates
- Converts torch.nn.Module models into functional, stateless forms for meta-learning
- Provides differentiable versions of standard optimizers such as Adam and SGD
- Allows unrolled optimization for higher-order gradient computation
- Easily integrates into existing PyTorch workflows with minimal modification
- Supports custom differentiable optimizers via registration and subclassing
Langage de programmation
Python
Catégories
This is an application that can also be fetched from https://sourceforge.net/projects/higher.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.