This is the Windows app named Theseus whose latest release can be downloaded as 0.2.2sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Theseus with OnWorks for free.
Suivez ces instructions pour exécuter cette application :
- 1. Téléchargé cette application sur votre PC.
- 2. Entrez dans notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous voulez.
- 3. Téléchargez cette application dans ce gestionnaire de fichiers.
- 4. Démarrez n'importe quel émulateur en ligne OS OnWorks à partir de ce site Web, mais un meilleur émulateur en ligne Windows.
- 5. Depuis le système d'exploitation OnWorks Windows que vous venez de démarrer, accédez à notre gestionnaire de fichiers https://www.onworks.net/myfiles.php?username=XXXXX avec le nom d'utilisateur que vous souhaitez.
- 6. Téléchargez l'application et installez-la.
- 7. Téléchargez Wine depuis les dépôts de logiciels de vos distributions Linux. Une fois installé, vous pouvez ensuite double-cliquer sur l'application pour les exécuter avec Wine. Vous pouvez également essayer PlayOnLinux, une interface sophistiquée sur Wine qui vous aidera à installer des programmes et des jeux Windows populaires.
Wine est un moyen d'exécuter un logiciel Windows sur Linux, mais sans Windows requis. Wine est une couche de compatibilité Windows open source qui peut exécuter des programmes Windows directement sur n'importe quel bureau Linux. Essentiellement, Wine essaie de ré-implémenter suffisamment de Windows à partir de zéro pour qu'il puisse exécuter toutes ces applications Windows sans avoir réellement besoin de Windows.
CAPTURES D'ÉCRAN:
Thésée
DESCRIPTION:
Theseus is a library for differentiable nonlinear optimization that lets you embed solvers like Gauss-Newton or Levenberg–Marquardt inside PyTorch models. Problems are expressed as factor graphs with variables on manifolds (e.g., SE(3), SO(3)), so classical robotics and vision tasks—bundle adjustment, pose graph optimization, hand–eye calibration—can be written succinctly and solved efficiently. Because solves are differentiable, you can backpropagate through optimization to learn cost weights, feature extractors, or initialization networks end-to-end. The implementation supports batched optimization on GPU, robust losses, damping strategies, and custom factors, making it practical for real-time systems. Helper packages provide geometry primitives and utilities for composing priors, relative constraints, and measurement models. Theseus bridges the gap between classical optimization and deep learning, enabling hybrid systems that learn components.
Comment ça marche
- Differentiable Gauss-Newton and Levenberg–Marquardt solvers in PyTorch
- Factor-graph API with manifold variables like SE(3) and SO(3)
- Batched, GPU-accelerated solves with robust loss functions
- Autograd support to learn costs, features, or initializations end-to-end
- Geometry helpers and reusable factors for SLAM and bundle adjustment
- Extensible design for custom variables, factors, and damping policies
Langage de programmation
Python
Catégories
This is an application that can also be fetched from https://sourceforge.net/projects/theseus.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.