This is the Windows app named Awesome-Quant whose latest release can be downloaded as awesome-quantsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Awesome-Quant with OnWorks for free.
Ikuti petunjuk ini untuk menjalankan aplikasi ini:
- 1. Download aplikasi ini di PC Anda.
- 2. Masuk ke file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan username yang anda inginkan.
- 3. Upload aplikasi ini di filemanager tersebut.
- 4. Mulai emulator online OS OnWorks apa pun dari situs web ini, tetapi emulator online Windows yang lebih baik.
- 5. Dari OS Windows OnWorks yang baru saja Anda mulai, buka file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan nama pengguna yang Anda inginkan.
- 6. Unduh aplikasi dan instal.
- 7. Unduh Wine dari repositori perangkat lunak distribusi Linux Anda. Setelah terinstal, Anda kemudian dapat mengklik dua kali aplikasi untuk menjalankannya dengan Wine. Anda juga dapat mencoba PlayOnLinux, antarmuka mewah di atas Wine yang akan membantu Anda menginstal program dan game Windows populer.
Wine adalah cara untuk menjalankan perangkat lunak Windows di Linux, tetapi tidak memerlukan Windows. Wine adalah lapisan kompatibilitas Windows sumber terbuka yang dapat menjalankan program Windows secara langsung di desktop Linux apa pun. Pada dasarnya, Wine mencoba untuk mengimplementasikan kembali Windows dari awal sehingga dapat menjalankan semua aplikasi Windows tersebut tanpa benar-benar membutuhkan Windows.
Tangkapan layar
Ad
Awesome-Quant
DESKRIPSI
awesome-quant is a curated list (“awesome list”) of libraries, packages, articles, and resources for quantitative finance (“quants”). It includes tools, frameworks, research papers, blogs, datasets, etc. It aims to help people working in algorithmic trading, quant investing, financial engineering, etc., find useful open source or educational resources. Licensed under typical “awesome” list standards.
Fitur
- Collections of quant-finance libraries & packages across multiple languages (Python, R, C++, etc.)
- Links to datasets and data sources for financial / market data
- Resources for research, articles, blogs, educational content in quant finance
- Frameworks/platforms, backtesting tools, risk management, portfolio optimization tools included
- Curated; quality filtered; community contributions via pull requests are accepted
- Tagged / organized by topic: algorithmic trading, time series, data visualization etc.
Bahasa Pemrograman
Ular sanca
KATEGORI
This is an application that can also be fetched from https://sourceforge.net/projects/awesome-quant.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.