This is the Windows app named fvcore whose latest release can be downloaded as fvcoresourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named fvcore with OnWorks for free.
Follow these instructions in order to run this app:
- 1. Downloaded this application in your PC.
- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 3. Upload this application in such filemanager.
- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.
- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 6. Download the application and install it.
- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.
Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.
SCREENSHOTS
Ad
fvcore
DESCRIPTION
fvcore is a lightweight utility library that factors out common performance-minded components used across Facebook/Meta computer-vision codebases. It provides numerics and loss layers (e.g., focal loss, smooth-L1, IoU/GIoU) implemented for speed and clarity, along with initialization helpers and normalization layers for building PyTorch models. Its common modules include timers, logging, checkpoints, registry patterns, and configuration helpers that reduce boilerplate in research code. A standout capability is FLOP and activation counting, which analyzes arbitrary PyTorch graphs to report cost by operator and by module for precise profiling. The file I/O layer (PathManager) abstracts local/remote storage so the same code can read from disks, cloud buckets, or HTTP endpoints. Because it is small, stable, and well-tested, fvcore is frequently imported by projects like Detectron2 and PyTorchVideo to avoid duplicating infrastructure and to keep research repos.
Features
- Fast PyTorch losses and layers commonly used in detection and segmentation
- FLOP and activation analysis tools for detailed computational profiling
- Checkpoint, logging, timing, and registry utilities for clean training loops
- PathManager abstraction for uniform local and remote file I/O
- Weight initialization helpers and normalization utilities
- Small, modular design that’s easy to cherry-pick into research projects
Programming Language
Python
Categories
This is an application that can also be fetched from https://sourceforge.net/projects/fvcore.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.
