This is the Linux app named Graph Nets library whose latest release can be downloaded as graph_netsv1.1.0sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Graph Nets library with OnWorks for free.
Postępuj zgodnie z tymi instrukcjami, aby uruchomić tę aplikację:
- 1. Pobrałem tę aplikację na swój komputer.
- 2. Wpisz w naszym menedżerze plików https://www.onworks.net/myfiles.php?username=XXXXX z wybraną nazwą użytkownika.
- 3. Prześlij tę aplikację w takim menedżerze plików.
- 4. Uruchom emulator online OnWorks Linux lub Windows online lub emulator online MACOS z tej witryny.
- 5. W systemie operacyjnym OnWorks Linux, który właśnie uruchomiłeś, przejdź do naszego menedżera plików https://www.onworks.net/myfiles.php?username=XXXXX z wybraną nazwą użytkownika.
- 6. Pobierz aplikację, zainstaluj ją i uruchom.
ZDJĘCIA EKRANU:
Biblioteka Graph Nets
OPIS:
Graph Nets, developed by Google DeepMind, is a Python library designed for constructing and training graph neural networks (GNNs) using TensorFlow and Sonnet. It provides a high-level, flexible framework for building neural architectures that operate directly on graph-structured data. A graph network takes graphs as inputs, consisting of edges, nodes, and global attributes, and produces updated graphs with modified feature representations at each level. This library implements the foundational ideas from DeepMind’s paper “Relational Inductive Biases, Deep Learning, and Graph Networks”, offering tools to explore relational reasoning and message-passing neural networks. Graph Nets supports both TensorFlow 1 and TensorFlow 2, working with CPU and GPU environments, and includes educational Jupyter demos for shortest path finding, sorting, and physical prediction tasks. The codebase emphasizes modularity, allowing users to easily define their own edge, node, and global update functions.
Funkcjonalności
- Framework for building graph neural networks using TensorFlow and Sonnet
- Supports graph-level, node-level, and edge-level feature learning
- Compatible with TensorFlow 1.x and 2.x, on both CPU and GPU setups
- Includes Colab and Jupyter demo notebooks for hands-on learning and experimentation
- Enables modular architecture design with customizable graph update functions
- Suitable for a range of tasks including physical simulation, sorting, and pathfinding
Język programowania
Python
Kategorie
This is an application that can also be fetched from https://sourceforge.net/projects/graph-nets-library.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.