SimSiam download for Linux

This is the Linux app named SimSiam whose latest release can be downloaded as simsiamsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

 
 

Download and run online this app named SimSiam with OnWorks for free.

Postępuj zgodnie z tymi instrukcjami, aby uruchomić tę aplikację:

- 1. Pobrałem tę aplikację na swój komputer.

- 2. Wpisz w naszym menedżerze plików https://www.onworks.net/myfiles.php?username=XXXXX z wybraną nazwą użytkownika.

- 3. Prześlij tę aplikację w takim menedżerze plików.

- 4. Uruchom emulator online OnWorks Linux lub Windows online lub emulator online MACOS z tej witryny.

- 5. W systemie operacyjnym OnWorks Linux, który właśnie uruchomiłeś, przejdź do naszego menedżera plików https://www.onworks.net/myfiles.php?username=XXXXX z wybraną nazwą użytkownika.

- 6. Pobierz aplikację, zainstaluj ją i uruchom.

ZDJĘCIA EKRANU:


SimSiam


OPIS:

SimSiam is a PyTorch implementation of “Exploring Simple Siamese Representation Learning” by Xinlei Chen and Kaiming He. The project introduces a minimalist approach to self-supervised learning that avoids negative pairs, momentum encoders, or large memory banks—key complexities of prior contrastive methods. SimSiam learns image representations by maximizing similarity between two augmented views of the same image through a Siamese neural network with a stop-gradient operation, preventing feature collapse. This elegant yet effective design achieves strong results in unsupervised learning benchmarks such as ImageNet without requiring contrastive losses. The repository provides scripts for both unsupervised pre-training and linear evaluation, using a ResNet-50 backbone by default. It is compatible with multi-GPU distributed training and can be fine-tuned or transferred to downstream tasks like object detection following the same setup as MoCo.



Funkcjonalności

  • Minimal self-supervised learning framework without negative pairs or momentum encoders
  • PyTorch-based implementation optimized for distributed multi-GPU training
  • Fully reproducible training pipeline for ImageNet using default hyperparameters from the paper
  • Includes both unsupervised pre-training and linear evaluation scripts
  • LARS optimizer support via NVIDIA Apex for large-batch training
  • Compatible with object detection transfer setups from MoCo


Język programowania

Python


Kategorie

Ramy uczenia głębokiego

This is an application that can also be fetched from https://sourceforge.net/projects/simsiam.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.



Najnowsze programy online dla systemów Linux i Windows


Kategorie do pobrania Oprogramowanie i programy dla Windows i Linux