This is the Linux app named Tracking Any Point (TAP) whose latest release can be downloaded as tapnetsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Tracking Any Point (TAP) with OnWorks for free.
Urmați aceste instrucțiuni pentru a rula această aplicație:
- 1. Ați descărcat această aplicație pe computer.
- 2. Introduceți în managerul nostru de fișiere https://www.onworks.net/myfiles.php?username=XXXXX cu numele de utilizator pe care îl doriți.
- 3. Încărcați această aplicație într-un astfel de manager de fișiere.
- 4. Porniți emulatorul online OnWorks Linux sau Windows online sau emulatorul online MACOS de pe acest site web.
- 5. Din sistemul de operare OnWorks Linux pe care tocmai l-ați pornit, accesați managerul nostru de fișiere https://www.onworks.net/myfiles.php?username=XXXXX cu numele de utilizator dorit.
- 6. Descărcați aplicația, instalați-o și rulați-o.
CAPTURĂ DE ECRAN:
Urmărirea oricărui punct (TAP)
DESCRIERE:
TAPNet is the official Google DeepMind repository for Tracking Any Point (TAP), bundling datasets, models, benchmarks, and demos for precise point tracking in videos. The project includes the TAP-Vid and TAPVid-3D benchmarks, which evaluate long-range tracking of arbitrary points in 2D and 3D across diverse real and synthetic videos. Its flagship models—TAPIR, BootsTAPIR, and the latest TAPNext—use matching plus temporal refinement or next-token style propagation to achieve state-of-the-art accuracy and speed on TAP-Vid. RoboTAP demonstrates how TAPIR-style tracks can drive real-world robot manipulation via efficient imitation, and ships with a dataset of annotated robotics videos. The repo provides JAX and PyTorch checkpoints, Colab demos, and a real-time live demo that runs on a GPU to let you select and track points interactively.
Categorii
- Clear coordinate conventions and standardized metrics for fair, reproducible comparisons
- Training and evaluation pipelines, plus Kubric utilities for generating point tracks
- Colab notebooks and an offline/online real-time demo for quick experimentation
- RoboTAP benchmark and clustering demo for robotics manipulation from point tracks
- High-performance models including TAPIR, BootsTAPIR, and TAPNext with JAX and PyTorch checkpoints
- TAP-Vid and TAPVid-3D datasets and evaluation metrics for point tracking
Limbaj de programare
Python, Unix Shell
Categorii
This is an application that can also be fetched from https://sourceforge.net/projects/tap.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.