This is the Linux app named Tracking Any Point (TAP) whose latest release can be downloaded as tapnetsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Tracking Any Point (TAP) with OnWorks for free.
Следуйте этим инструкциям, чтобы запустить это приложение:
- 1. Загрузил это приложение на свой компьютер.
- 2. Введите в нашем файловом менеджере https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.
- 3. Загрузите это приложение в такой файловый менеджер.
- 4. Запустите онлайн-эмулятор OnWorks Linux или Windows или онлайн-эмулятор MACOS с этого веб-сайта.
- 5. В только что запущенной ОС OnWorks Linux перейдите в наш файловый менеджер https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.
- 6. Скачайте приложение, установите его и запустите.
СКРИНШОТЫ:
Tracking Any Point (TAP)
ОПИСАНИЕ:
TAPNet is the official Google DeepMind repository for Tracking Any Point (TAP), bundling datasets, models, benchmarks, and demos for precise point tracking in videos. The project includes the TAP-Vid and TAPVid-3D benchmarks, which evaluate long-range tracking of arbitrary points in 2D and 3D across diverse real and synthetic videos. Its flagship models—TAPIR, BootsTAPIR, and the latest TAPNext—use matching plus temporal refinement or next-token style propagation to achieve state-of-the-art accuracy and speed on TAP-Vid. RoboTAP demonstrates how TAPIR-style tracks can drive real-world robot manipulation via efficient imitation, and ships with a dataset of annotated robotics videos. The repo provides JAX and PyTorch checkpoints, Colab demos, and a real-time live demo that runs on a GPU to let you select and track points interactively.
Особенности
- Clear coordinate conventions and standardized metrics for fair, reproducible comparisons
- Training and evaluation pipelines, plus Kubric utilities for generating point tracks
- Colab notebooks and an offline/online real-time demo for quick experimentation
- RoboTAP benchmark and clustering demo for robotics manipulation from point tracks
- High-performance models including TAPIR, BootsTAPIR, and TAPNext with JAX and PyTorch checkpoints
- TAP-Vid and TAPVid-3D datasets and evaluation metrics for point tracking
Язык программирования
Python, оболочка Unix
Категории
This is an application that can also be fetched from https://sourceforge.net/projects/tap.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.