This is the Windows app named Agent Lightning whose latest release can be downloaded as AgentLightningv0.3.0sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Agent Lightning with OnWorks for free.
Follow these instructions in order to run this app:
- 1. Downloaded this application in your PC.
- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 3. Upload this application in such filemanager.
- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.
- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 6. Download the application and install it.
- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.
Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.
SCREENSHOTS:
Agent Lightning
DESCRIPTION:
Agent Lightning is an open-source framework developed by Microsoft to train and optimize AI agents using techniques like reinforcement learning (RL), supervised fine-tuning, and automatic prompt optimization, with minimal or zero changes to existing agent code. It’s designed to be compatible with a wide range of agent architectures and frameworks — from LangChain and OpenAI Agent SDKs to AutoGen and custom Python agents — making it broadly applicable across different agent tooling ecosystems. Agent-Lightning introduces a lightweight training pipeline that observes agents’ execution traces, converts them into structured data, and feeds them into training algorithms, enabling users to improve agent behaviors systematically. The project emphasizes minimalist integration, so you can drop this into existing systems without extensive rewrites, focusing instead on iterative performance improvement.
Features
- Reinforcement learning-based agent optimization
- Zero or minimal code integration required
- Works with many agent frameworks (LangChain, AutoGen, etc.)
- Structured trace collection and training pipeline
- Trainer abstraction for iterative improvement
- Support for multi-agent systems
Programming Language
Python
Categories
This is an application that can also be fetched from https://sourceforge.net/projects/agent-lightning.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.