This is the Linux app named Tracking Any Point (TAP) whose latest release can be downloaded as tapnetsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Tracking Any Point (TAP) with OnWorks for free.
Bu uygulamayı çalıştırmak için şu talimatları izleyin:
- 1. Bu uygulamayı PC'nize indirdiniz.
- 2. Dosya yöneticimize https://www.onworks.net/myfiles.php?username=XXXXX istediğiniz kullanıcı adını girin.
- 3. Bu uygulamayı böyle bir dosya yöneticisine yükleyin.
- 4. Bu web sitesinden OnWorks Linux çevrimiçi veya Windows çevrimiçi öykünücüsünü veya MACOS çevrimiçi öykünücüsünü başlatın.
- 5. Yeni başladığınız OnWorks Linux işletim sisteminden, istediğiniz kullanıcı adıyla https://www.onworks.net/myfiles.php?username=XXXXX dosya yöneticimize gidin.
- 6. Uygulamayı indirin, kurun ve çalıştırın.
EKRAN GÖRÜNTÜLERİ:
Tracking Any Point (TAP)
AÇIKLAMA:
TAPNet is the official Google DeepMind repository for Tracking Any Point (TAP), bundling datasets, models, benchmarks, and demos for precise point tracking in videos. The project includes the TAP-Vid and TAPVid-3D benchmarks, which evaluate long-range tracking of arbitrary points in 2D and 3D across diverse real and synthetic videos. Its flagship models—TAPIR, BootsTAPIR, and the latest TAPNext—use matching plus temporal refinement or next-token style propagation to achieve state-of-the-art accuracy and speed on TAP-Vid. RoboTAP demonstrates how TAPIR-style tracks can drive real-world robot manipulation via efficient imitation, and ships with a dataset of annotated robotics videos. The repo provides JAX and PyTorch checkpoints, Colab demos, and a real-time live demo that runs on a GPU to let you select and track points interactively.
Özellikler
- Clear coordinate conventions and standardized metrics for fair, reproducible comparisons
- Training and evaluation pipelines, plus Kubric utilities for generating point tracks
- Colab notebooks and an offline/online real-time demo for quick experimentation
- RoboTAP benchmark and clustering demo for robotics manipulation from point tracks
- High-performance models including TAPIR, BootsTAPIR, and TAPNext with JAX and PyTorch checkpoints
- TAP-Vid and TAPVid-3D datasets and evaluation metrics for point tracking
Programlama dili
Python, Unix Kabuğu
Kategoriler
This is an application that can also be fetched from https://sourceforge.net/projects/tap.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.