DeepEP download for Windows

This is the Windows app named DeepEP whose latest release can be downloaded as Stablereleasev1.2.1sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

 
 

Download and run online this app named DeepEP with OnWorks for free.

请按照以下说明运行此应用程序:

- 1. 在您的 PC 中下载此应用程序。

- 2. 在我们的文件管理器 https://www.onworks.net/myfiles.php?username=XXXXX 中输入您想要的用户名。

- 3. 在这样的文件管理器中上传这个应用程序。

- 4. 从本网站启动任何 OS OnWorks 在线模拟器,但更好的 Windows 在线模拟器。

- 5. 从您刚刚启动的 OnWorks Windows 操作系统,使用您想要的用户名转到我们的文件管理器 https://www.onworks.net/myfiles.php?username=XXXXX。

- 6. 下载应用程序并安装。

- 7. 从您的 Linux 发行版软件存储库下载 Wine。 安装后,您可以双击该应用程序以使用 Wine 运行它们。 您还可以尝试 PlayOnLinux,这是 Wine 上的一个花哨界面,可帮助您安装流行的 Windows 程序和游戏。

Wine 是一种在 Linux 上运行 Windows 软件的方法,但不需要 Windows。 Wine 是一个开源的 Windows 兼容层,可以直接在任何 Linux 桌面上运行 Windows 程序。 本质上,Wine 试图从头开始重新实现足够多的 Windows,以便它可以运行所有这些 Windows 应用程序,而实际上不需要 Windows。

截图:


DeepEP


描述:

DeepEP is a communication library designed specifically to support Mixture-of-Experts (MoE) and expert parallelism (EP) deployments. Its core role is to implement high-throughput, low-latency all-to-all GPU communication kernels, which handle the dispatching of tokens to different experts (or shards) and then combining expert outputs back into the main data flow. Because MoE architectures require routing inputs to different experts, communication overhead can become a bottleneck — DeepEP addresses that by providing optimized GPU kernels and efficient dispatch/combining logic. The library also supports low-precision operations (such as FP8) to reduce memory and bandwidth usage during communication. DeepEP is aimed at large-scale model inference or training systems where expert parallelism is used to scale model capacity without replicating entire networks.



功能

  • Optimized all-to-all GPU communication kernels for MoE dispatch and combine
  • Tailored to expert parallelism (EP) architectures for scaling model capacity
  • Support for low-precision operations (e.g. FP8) to reduce memory/bandwidth
  • High throughput and low latency design (minimizing communication overhead)
  • Integration potential with MoE model stacks to handle expert routing efficiently
  • Focus on production-scale usage: enabling faster inference/training in MoE systems


程式语言

Python


分类

图书馆

This is an application that can also be fetched from https://sourceforge.net/projects/deepep.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.



最新的 Linux 和 Windows 在线程序


下载适用于 Windows 和 Linux 的软件和程序的类别