This is the Windows app named Metaseq whose latest release can be downloaded as metaseqsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Metaseq with OnWorks for free.
এই অ্যাপটি চালানোর জন্য এই নির্দেশাবলী অনুসরণ করুন:
- 1. আপনার পিসিতে এই অ্যাপ্লিকেশনটি ডাউনলোড করুন৷
- 2. আমাদের ফাইল ম্যানেজারে প্রবেশ করুন https://www.onworks.net/myfiles.php?username=XXXXX আপনি যে ইউজারনেম চান।
- 3. এই ধরনের ফাইল ম্যানেজারে এই অ্যাপ্লিকেশনটি আপলোড করুন।
- 4. এই ওয়েবসাইট থেকে যেকোনো OS OnWorks অনলাইন এমুলেটর শুরু করুন, তবে আরও ভালো উইন্ডোজ অনলাইন এমুলেটর।
- 5. OnWorks Windows OS থেকে আপনি এইমাত্র শুরু করেছেন, আমাদের ফাইল ম্যানেজারে যান https://www.onworks.net/myfiles.php?username=XXXXX আপনার পছন্দের ব্যবহারকারীর নাম সহ।
- 6. অ্যাপ্লিকেশনটি ডাউনলোড করুন এবং এটি ইনস্টল করুন।
- 7. আপনার লিনাক্স ডিস্ট্রিবিউশন সফ্টওয়্যার সংগ্রহস্থল থেকে ওয়াইন ডাউনলোড করুন। একবার ইনস্টল হয়ে গেলে, আপনি ওয়াইন দিয়ে চালানোর জন্য অ্যাপটিতে ডাবল-ক্লিক করতে পারেন। এছাড়াও আপনি PlayOnLinux ব্যবহার করে দেখতে পারেন, ওয়াইনের উপর একটি অভিনব ইন্টারফেস যা আপনাকে জনপ্রিয় উইন্ডোজ প্রোগ্রাম এবং গেম ইনস্টল করতে সাহায্য করবে।
ওয়াইন লিনাক্সে উইন্ডোজ সফ্টওয়্যার চালানোর একটি উপায়, কিন্তু কোন উইন্ডোজ প্রয়োজন নেই। ওয়াইন হল একটি ওপেন সোর্স উইন্ডোজ সামঞ্জস্যপূর্ণ স্তর যা সরাসরি যেকোনো লিনাক্স ডেস্কটপে উইন্ডোজ প্রোগ্রাম চালাতে পারে। মূলত, ওয়াইন স্ক্র্যাচ থেকে পর্যাপ্ত উইন্ডোজ পুনরায় প্রয়োগ করার চেষ্টা করছে যাতে এটি আসলে উইন্ডোজের প্রয়োজন ছাড়াই সেই সমস্ত উইন্ডোজ অ্যাপ্লিকেশন চালাতে পারে।
স্ক্রীনশটগুলি
Ad
মেটাসেক
বর্ণনাঃ
Metaseq is a flexible, high-performance framework for training and serving large-scale sequence models, such as language models, translation systems, and instruction-tuned LLMs. Built on top of PyTorch, it provides distributed training, model sharding, mixed-precision computation, and memory-efficient checkpointing to support models with hundreds of billions of parameters. The framework was used internally at Meta to train models like OPT (Open Pre-trained Transformer) and serves as a reference implementation for scaling transformer architectures efficiently across GPUs and nodes. It supports both pretraining and fine-tuning workflows with data pipelines for text, multilingual corpora, and custom tokenization schemes. Metaseq also includes APIs for evaluation, generation, and model serving, enabling seamless transitions from training to inference.
বৈশিষ্ট্য
- Distributed training and inference for large-scale transformer models
- Support for model, data, and pipeline parallelism across multiple GPUs and nodes
- Mixed-precision training and memory-efficient checkpointing
- Pretraining and fine-tuning workflows for text and multilingual data
- APIs for text generation, evaluation, and serving large models
- Reference implementation for Meta’s OPT and other large language models
প্রোগ্রামিং ভাষা
পাইথন
বিভাগ
This is an application that can also be fetched from https://sourceforge.net/projects/metaseq.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.