This is the Windows app named FlashMLA whose latest release can be downloaded as FlashMLAsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named FlashMLA with OnWorks for free.
Volg deze instructies om deze app uit te voeren:
- 1. Download deze applicatie op uw pc.
- 2. Voer in onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX in met de gebruikersnaam die u wilt.
- 3. Upload deze applicatie in zo'n bestandsbeheerder.
- 4. Start een OS OnWorks online emulator vanaf deze website, maar een betere Windows online emulator.
- 5. Ga vanuit het OnWorks Windows-besturingssysteem dat u zojuist hebt gestart naar onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX met de gewenste gebruikersnaam.
- 6. Download de applicatie en installeer deze.
- 7. Download Wine van de softwarebronnen voor Linux-distributies. Eenmaal geïnstalleerd, kunt u vervolgens dubbelklikken op de app om ze met Wine uit te voeren. Je kunt ook PlayOnLinux proberen, een mooie interface via Wine waarmee je populaire Windows-programma's en -games kunt installeren.
Wine is een manier om Windows-software op Linux uit te voeren, maar zonder dat Windows vereist is. Wine is een open-source Windows-compatibiliteitslaag die Windows-programma's rechtstreeks op elke Linux-desktop kan uitvoeren. In wezen probeert Wine genoeg van Windows opnieuw te implementeren, zodat het al die Windows-applicaties kan draaien zonder Windows echt nodig te hebben.
SCREENSHOTS
Ad
FlashMLA
PRODUCTBESCHRIJVING
FlashMLA is a high-performance decoding kernel library designed especially for Multi-Head Latent Attention (MLA) workloads, targeting NVIDIA Hopper GPU architectures. It provides optimized kernels for MLA decoding, including support for variable-length sequences, helping reduce latency and increase throughput in model inference systems using that attention style. The library supports both BF16 and FP16 data types, and includes a paged KV cache implementation with a block size of 64 to efficiently manage memory during decoding. On very compute-bound settings, it can reach up to ~660 TFLOPS on H800 SXM5 hardware, while in memory-bound configurations it can push memory throughput to ~3000 GB/s. The team regularly updates it with performance improvements; for example, a 2025 update claims 5 % to 15 % gains on compute-bound workloads while maintaining API compatibility.
Kenmerken
- Decoding kernel optimized for MLA (Multi-Head Latent Attention) modules
- Support for BF16 and FP16 precision to balance speed vs numerical stability
- Paged KV cache with block size = 64 to efficiently handle varying sequence lengths
- GPU-native implementation targeting NVIDIA Hopper architecture
- Python / PyTorch integration via functions like flash_mla_with_kvcache
- Regular performance improvements over time (e.g. 5–15 % uplift in newer versions)
Programmeertaal
C + +
Categorieën
This is an application that can also be fetched from https://sourceforge.net/projects/flashmla.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.