This is the Windows app named Higher whose latest release can be downloaded as higherv0.2.1sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Higher with OnWorks for free.
Làm theo các hướng dẫn sau để chạy ứng dụng này:
- 1. Đã tải ứng dụng này xuống PC của bạn.
- 2. Nhập vào trình quản lý tệp của chúng tôi https://www.onworks.net/myfiles.php?username=XXXXX với tên người dùng mà bạn muốn.
- 3. Tải lên ứng dụng này trong trình quản lý tệp như vậy.
- 4. Khởi động bất kỳ trình giả lập trực tuyến OS OnWorks nào từ trang web này, nhưng trình giả lập trực tuyến Windows tốt hơn.
- 5. Từ Hệ điều hành Windows OnWorks bạn vừa khởi động, hãy truy cập trình quản lý tệp của chúng tôi https://www.onworks.net/myfiles.php?username=XXXXX với tên người dùng mà bạn muốn.
- 6. Tải xuống ứng dụng và cài đặt nó.
- 7. Tải xuống Wine từ kho phần mềm phân phối Linux của bạn. Sau khi cài đặt, bạn có thể nhấp đúp vào ứng dụng để chạy chúng với Wine. Bạn cũng có thể thử PlayOnLinux, một giao diện đẹp mắt trên Wine sẽ giúp bạn cài đặt các chương trình và trò chơi phổ biến của Windows.
Wine là một cách để chạy phần mềm Windows trên Linux, nhưng không cần Windows. Wine là một lớp tương thích Windows mã nguồn mở có thể chạy các chương trình Windows trực tiếp trên bất kỳ máy tính để bàn Linux nào. Về cơ bản, Wine đang cố gắng triển khai lại đủ Windows từ đầu để nó có thể chạy tất cả các ứng dụng Windows đó mà không thực sự cần đến Windows.
MÀN HÌNH
Ad
Cao hơn
MÔ TẢ
higher is a specialized library designed to extend PyTorch’s capabilities by enabling higher-order differentiation and meta-learning through differentiable optimization loops. It allows developers and researchers to compute gradients through entire optimization processes, which is essential for tasks like meta-learning, hyperparameter optimization, and model adaptation. The library introduces utilities that convert standard torch.nn.Module instances into “stateless” functional forms, so parameter updates can be treated as differentiable operations. It also provides differentiable implementations of common optimizers like SGD and Adam, making it possible to backpropagate through an arbitrary number of inner-loop optimization steps. By offering a clear and flexible interface, higher simplifies building complex learning algorithms that require gradient tracking across multiple update levels. Its design ensures compatibility with existing PyTorch models.
Tính năng
- Enables differentiable inner-loop optimization and gradient tracking through updates
- Converts torch.nn.Module models into functional, stateless forms for meta-learning
- Provides differentiable versions of standard optimizers such as Adam and SGD
- Allows unrolled optimization for higher-order gradient computation
- Easily integrates into existing PyTorch workflows with minimal modification
- Supports custom differentiable optimizers via registration and subclassing
Ngôn ngữ lập trình
Python
Danh Mục
This is an application that can also be fetched from https://sourceforge.net/projects/higher.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.