This is the Linux app named FixRes whose latest release can be downloaded as FixRessourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named FixRes with OnWorks for free.
اتبع هذه التعليمات لتشغيل هذا التطبيق:
- 1. قم بتنزيل هذا التطبيق على جهاز الكمبيوتر الخاص بك.
- 2. أدخل في مدير الملفات الخاص بنا https://www.onworks.net/myfiles.php؟username=XXXXX باسم المستخدم الذي تريده.
- 3. تحميل هذا التطبيق في هذا الملف.
- 4. ابدأ تشغيل OnWorks Linux عبر الإنترنت أو محاكي Windows عبر الإنترنت أو محاكي MACOS عبر الإنترنت من هذا الموقع.
- 5. من نظام تشغيل OnWorks Linux الذي بدأته للتو ، انتقل إلى مدير الملفات الخاص بنا https://www.onworks.net/myfiles.php؟username=XXXXX مع اسم المستخدم الذي تريده.
- 6. قم بتنزيل التطبيق وتثبيته وتشغيله.
SCREENSHOTS
Ad
FixRes
الوصف
FixRes is a lightweight yet powerful training methodology for convolutional neural networks (CNNs) that addresses the common train-test resolution discrepancy problem in image classification. Developed by Facebook Research, FixRes improves model generalization by adjusting training and evaluation procedures to better align input resolutions used during different phases. The approach is simple but highly effective, requiring no architectural modifications and working across diverse CNN backbones such as ResNet, ResNeXt, PNASNet, and EfficientNet. FixRes demonstrates that a mismatch between training and testing resolutions often leads to suboptimal accuracy, and fine-tuning the classifier and batch normalization layers at higher test resolutions significantly enhances performance. The repository includes pretrained models, feature embeddings, and evaluation scripts corresponding to the experiments reported in the NeurIPS 2019 paper “Fixing the train-test resolution discrepancy.”
شرح المميزات:
- Corrects resolution mismatch between training and testing phases for CNNs
- Compatible with multiple architectures including ResNet, ResNeXt, PNASNet, and EfficientNet
- Includes pretrained models achieving top ImageNet benchmarks
- Supports CutMix augmentation and improved fine-tuning strategies
- Provides feature extraction and softmax outputs for reproducibility
- Offers scripts for training, fine-tuning, and evaluation at custom resolutions
لغة البرمجة
Python
التصنيفات
This is an application that can also be fetched from https://sourceforge.net/projects/fixres.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.