This is the Windows app named Metaseq whose latest release can be downloaded as metaseqsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Metaseq with OnWorks for free.
اتبع هذه التعليمات لتشغيل هذا التطبيق:
- 1. قم بتنزيل هذا التطبيق على جهاز الكمبيوتر الخاص بك.
- 2. أدخل في مدير الملفات الخاص بنا https://www.onworks.net/myfiles.php؟username=XXXXX باسم المستخدم الذي تريده.
- 3. تحميل هذا التطبيق في هذا الملف.
- 4. ابدأ تشغيل أي محاكي لنظام التشغيل OnWorks عبر الإنترنت من موقع الويب هذا ، ولكن أفضل محاكي Windows عبر الإنترنت.
- 5. من نظام التشغيل OnWorks Windows الذي بدأته للتو ، انتقل إلى مدير الملفات الخاص بنا https://www.onworks.net/myfiles.php؟username=XXXXX مع اسم المستخدم الذي تريده.
- 6. قم بتنزيل التطبيق وتثبيته.
- 7. قم بتنزيل Wine من مستودعات برامج توزيعات Linux الخاصة بك. بمجرد التثبيت ، يمكنك النقر نقرًا مزدوجًا فوق التطبيق لتشغيله باستخدام Wine. يمكنك أيضًا تجربة PlayOnLinux ، وهي واجهة رائعة على Wine والتي ستساعدك على تثبيت برامج وألعاب Windows الشائعة.
يعد Wine طريقة لتشغيل برامج Windows على نظام Linux ، ولكن بدون الحاجة إلى Windows. Wine عبارة عن طبقة توافق Windows مفتوحة المصدر يمكنها تشغيل برامج Windows مباشرة على أي سطح مكتب Linux. بشكل أساسي ، يحاول Wine إعادة تنفيذ ما يكفي من Windows من البداية حتى يتمكن من تشغيل جميع تطبيقات Windows دون الحاجة إلى Windows بالفعل.
SCREENSHOTS
Ad
ميتاسك
الوصف
Metaseq is a flexible, high-performance framework for training and serving large-scale sequence models, such as language models, translation systems, and instruction-tuned LLMs. Built on top of PyTorch, it provides distributed training, model sharding, mixed-precision computation, and memory-efficient checkpointing to support models with hundreds of billions of parameters. The framework was used internally at Meta to train models like OPT (Open Pre-trained Transformer) and serves as a reference implementation for scaling transformer architectures efficiently across GPUs and nodes. It supports both pretraining and fine-tuning workflows with data pipelines for text, multilingual corpora, and custom tokenization schemes. Metaseq also includes APIs for evaluation, generation, and model serving, enabling seamless transitions from training to inference.
شرح المميزات:
- Distributed training and inference for large-scale transformer models
- Support for model, data, and pipeline parallelism across multiple GPUs and nodes
- Mixed-precision training and memory-efficient checkpointing
- Pretraining and fine-tuning workflows for text and multilingual data
- APIs for text generation, evaluation, and serving large models
- Reference implementation for Meta’s OPT and other large language models
لغة البرمجة
Python
التصنيفات
This is an application that can also be fetched from https://sourceforge.net/projects/metaseq.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.