GoGPT Best VPN GoSearch

Icône de favori OnWorks

i.maxlikgrass - Online in the Cloud

Run i.maxlikgrass in OnWorks free hosting provider over Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

This is the command i.maxlikgrass that can be run in the OnWorks free hosting provider using one of our multiple free online workstations such as Ubuntu Online, Fedora Online, Windows online emulator or MAC OS online emulator

PROGRAMME:

Nom


je.maxlik - Classifies the cell spectral reflectances in imagery data.
Classification is based on the spectral signature information generated by either
i.cluster, g.gui.iclass, or i.gensig.

MOTS-CLÉS


imagery, classification, Maximum Likelihood Classification, MLC

SYNOPSIS


je.maxlik
je.maxlik --Aidez-moi
je.maxlik groupe=prénom sous-groupe=prénom fichier de signature=prénom sortie=prénom [rejeter=prénom]
[--écraser] [--vous aider] [--verbeux] [--calme] [--ui]

Drapeaux:
--écraser
Autoriser les fichiers de sortie à écraser les fichiers existants

--Aidez-moi
Imprimer le récapitulatif d'utilisation

--verbeux
Sortie du module verbeux

--silencieux
Sortie module silencieuse

--interface utilisateur
Forcer le lancement de la boîte de dialogue GUI

Paramètres:
groupe=prénom [obligatoire]
Nom du groupe d'images d'entrée

sous-groupe=prénom [obligatoire]
Nom du sous-groupe d'images d'entrée

fichier de signature=prénom [obligatoire]
Nom du fichier d'entrée contenant les signatures
Generated by either i.cluster, g.gui.iclass, or i.gensig

sortie=prénom [obligatoire]
Nom de la carte raster de sortie contenant les résultats de la classification

rejeter=prénom
Name for output raster map holding reject threshold results

DESCRIPTION


je.maxlik is a maximum-likelihood discriminant analysis classifier. It can be used to
perform the second step in either an unsupervised or a supervised image classification.

Either image classification methods are performed in two steps. The first step in an
unsupervised image classification is performed by je.cluster; the first step in a
supervised classification is executed by the GRASS program g.gui.iclass. Dans les deux cas,
the second step in the image classification procedure is performed by je.maxlik.

In an unsupervised classification, the maximum-likelihood classifier uses the cluster
means and covariance matrices from the je.cluster signature file to determine to which
category (spectral class) each cell in the image has the highest probability of belonging.
In a supervised image classification, the maximum-likelihood classifier uses the region
means and covariance matrices from the spectral signature file generated by g.gui.iclass,
based on regions (groups of image pixels) chosen by the user, to determine to which
category each cell in the image has the highest probability of belonging.

In either case, the raster map output by je.maxlik is a classified image in which each cell
has been assigned to a spectral class (i.e., a category). The spectral classes
(categories) can be related to specific land cover types on the ground.

NOTES


The maximum-likelihood classifier assumes that the spectral signatures for each class
(category) in each band file are normally distributed (i.e., Gaussian in nature).
Algorithms, such as je.cluster, g.gui.iclass, ou je.gensig, however, can create signatures
that are not valid distributed (more likely with g.gui.iclass). If this occurs, je.maxlik
will reject them and display a warning message.

The signature file (fichier de signature) contains the cluster and covariance matrices that were
calculated by the GRASS program je.cluster (or the region means and covariance matrices
généré par g.gui.iclass, if the user runs a supervised classification). These spectral
signatures are what determine the categories (classes) to which image pixels will be
assigned during the classification process.

The optional name of a rejeter raster map holds the reject threshold results. This is the
result of a chi square test on each discriminant result at various threshold levels of
confidence to determine at what confidence level each cell classified (categorized). It is
the reject threshold map layer, and contains the index to one calculated confidence level
for each classified cell in the classified image. 16 confidence intervals are predefined,
and the reject map is to be interpreted as 1 = keep and 16 = reject. One of the possible
uses for this map layer is as a mask, to identify cells in the classified image that have
a low probability (high reject index) of being assigned to the correct class.

EXEMPLE


Second part of the unsupervised classification of a LANDSAT subscene (VIZ, NIR, MIR
channels) in North Carolina (see je.cluster manual page for the first part of the example):
# using here the signaturefile created by i.cluster
i.maxlik group=lsat7_2002 subgroup=lsat7_2002 \
fichier de signature=sig_cluster_lsat2002 \
output=lsat7_2002_cluster_classes reject=lsat7_2002_cluster_reject
# visually check result
d.lun wx0
d.rast.leg lsat7_2002_cluster_classes
d.rast.leg lsat7_2002_cluster_reject
# see how many pixels were rejected at given levels
r.report lsat7_2002_cluster_reject units=k,p
# optionally, filter out pixels with high level of rejection
# here we remove pixels of at least 90% of rejection probability, i.e. categories 12-16
r.mapcalc "lsat7_2002_cluster_classes_filtered = \
if(lsat7_2002_cluster_reject <= 12, lsat7_2002_cluster_classes, null())"

RGB composite of input data

Output raster map with pixels classified (10 classes)

Output raster map with rejection probability values (pixel classification confidence
niveaux)

Use i.maxlikgrass online using onworks.net services


Serveurs et postes de travail gratuits

Télécharger des applications Windows et Linux

Commandes Linux

Ad




×
Publicité
❤ ️Achetez, réservez ou achetez ici — gratuitement, contribue à maintenir la gratuité des services.