This is the Windows app named DetectAndTrack whose latest release can be downloaded as DetectAndTracksourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named DetectAndTrack with OnWorks for free.
Ikuti petunjuk ini untuk menjalankan aplikasi ini:
- 1. Download aplikasi ini di PC Anda.
- 2. Masuk ke file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan username yang anda inginkan.
- 3. Upload aplikasi ini di filemanager tersebut.
- 4. Mulai emulator online OS OnWorks apa pun dari situs web ini, tetapi emulator online Windows yang lebih baik.
- 5. Dari OS Windows OnWorks yang baru saja Anda mulai, buka file manager kami https://www.onworks.net/myfiles.php?username=XXXXX dengan nama pengguna yang Anda inginkan.
- 6. Unduh aplikasi dan instal.
- 7. Unduh Wine dari repositori perangkat lunak distribusi Linux Anda. Setelah terinstal, Anda kemudian dapat mengklik dua kali aplikasi untuk menjalankannya dengan Wine. Anda juga dapat mencoba PlayOnLinux, antarmuka mewah di atas Wine yang akan membantu Anda menginstal program dan game Windows populer.
Wine adalah cara untuk menjalankan perangkat lunak Windows di Linux, tetapi tidak memerlukan Windows. Wine adalah lapisan kompatibilitas Windows sumber terbuka yang dapat menjalankan program Windows secara langsung di desktop Linux apa pun. Pada dasarnya, Wine mencoba untuk mengimplementasikan kembali Windows dari awal sehingga dapat menjalankan semua aplikasi Windows tersebut tanpa benar-benar membutuhkan Windows.
Tangkapan layar
Ad
DetectAndTrack
DESKRIPSI
DetectAndTrack is the reference implementation for the CVPR 2018 paper “Detect-and-Track: Efficient Pose Estimation in Videos,” focusing on human keypoint detection and tracking across video frames. The system combines per-frame pose detection with a tracking mechanism to maintain identities over time, enabling efficient multi-person pose estimation in video. Code and instructions are organized to replicate paper results and to serve as a starting point for researchers working on pose in video. Although the repo has been archived and is now read-only, its issue tracker and artifacts remain useful for understanding implementation details and experimental settings. The project sits alongside other Facebook Research vision efforts, offering historical context for the evolution of video pose and tracking techniques. Researchers can still study the algorithms, adapt the pipeline, or port ideas into modern frameworks.
Fitur
- Multi-person pose detection in videos
- Temporal tracking to maintain identities across frames
- Reference code aligned with the CVPR 2018 paper
- Scripts to reproduce evaluation and benchmarks
- Modular components for detection and tracking stages
- Read-only archival for stable, citable reference
Bahasa Pemrograman
Ular sanca
KATEGORI
This is an application that can also be fetched from https://sourceforge.net/projects/detectandtrack.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.