This is the Windows app named Automated Interpretability whose latest release can be downloaded as automated-interpretabilitysourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Automated Interpretability with OnWorks for free.
このアプリを実行するには、次の手順に従ってください。
-1。このアプリケーションをPCにダウンロードしました。
--2。ファイルマネージャーhttps://www.onworks.net/myfiles.php?username=XXXXXに必要なユーザー名を入力します。
-3。このアプリケーションをそのようなファイルマネージャにアップロードします。
-4。このWebサイトからOSOnWorksオンラインエミュレーターを起動しますが、Windowsオンラインエミュレーターの方が優れています。
-5。起動したばかりのOnWorksWindows OSから、必要なユーザー名でファイルマネージャーhttps://www.onworks.net/myfiles.php?username=XXXXXにアクセスします。
-6。アプリケーションをダウンロードしてインストールします。
-7.LinuxディストリビューションソフトウェアリポジトリからWineをダウンロードします。 インストールしたら、アプリをダブルクリックして、Wineで実行できます。 また、人気のあるWindowsプログラムやゲームのインストールに役立つWine上の豪華なインターフェイスであるPlayOnLinuxを試すこともできます。
WineはLinux上でWindowsソフトウェアを実行する方法ですが、Windowsは必要ありません。 Wineは、任意のLinuxデスクトップでWindowsプログラムを直接実行できるオープンソースのWindows互換性レイヤーです。 基本的に、Wineは、実際にWindowsを必要とせずに、これらすべてのWindowsアプリケーションを実行できるように、十分な数のWindowsを最初から再実装しようとしています。
スクリーンショットは
Ad
Automated Interpretability
DESCRIPTION
The automated-interpretability repository implements tools and pipelines for automatically generating, simulating, and scoring explanations of neuron (or latent feature) behavior in neural networks. Instead of relying purely on manual, ad hoc interpretability probing, this repo aims to scale interpretability by using algorithmic methods that produce candidate explanations and assess their quality. It includes a “neuron explainer” component that, given a target neuron or latent feature, proposes natural language explanations or heuristics (e.g. “this neuron activates when the input has property X”) and then simulates activation behavior across example inputs to test whether the explanation holds. The project also contains a “neuron viewer” web component for browsing neurons, explanations, and activation patterns, making it more interactive and exploratory.
オプション
- A neuron explainer module that proposes natural language or rule-based explanations for neuron/latent feature behavior
- Simulation / scoring of explanations by comparing predicted activations vs true activations across inputs
- A neuron viewer UI to browse neurons, see activations, and inspect explanations
- Demo notebooks illustrating how explanations are generated and evaluated (e.g. explain_puzzles.ipynb)
- Infrastructure for activation capture and analysis (e.g. modules like activations.py)
- Ranking / scoring heuristics to decide which explanations are more faithful or useful
プログラミング言語
Python
カテゴリー
This is an application that can also be fetched from https://sourceforge.net/projects/automated-interpretab.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.