This is the Windows app named Synthetic Data Kit whose latest release can be downloaded as synthetic-data-kitsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Synthetic Data Kit with OnWorks for free.
このアプリを実行するには、次の手順に従ってください。
-1。このアプリケーションをPCにダウンロードしました。
--2。ファイルマネージャーhttps://www.onworks.net/myfiles.php?username=XXXXXに必要なユーザー名を入力します。
-3。このアプリケーションをそのようなファイルマネージャにアップロードします。
-4。このWebサイトからOSOnWorksオンラインエミュレーターを起動しますが、Windowsオンラインエミュレーターの方が優れています。
-5。起動したばかりのOnWorksWindows OSから、必要なユーザー名でファイルマネージャーhttps://www.onworks.net/myfiles.php?username=XXXXXにアクセスします。
-6。アプリケーションをダウンロードしてインストールします。
-7.LinuxディストリビューションソフトウェアリポジトリからWineをダウンロードします。 インストールしたら、アプリをダブルクリックして、Wineで実行できます。 また、人気のあるWindowsプログラムやゲームのインストールに役立つWine上の豪華なインターフェイスであるPlayOnLinuxを試すこともできます。
WineはLinux上でWindowsソフトウェアを実行する方法ですが、Windowsは必要ありません。 Wineは、任意のLinuxデスクトップでWindowsプログラムを直接実行できるオープンソースのWindows互換性レイヤーです。 基本的に、Wineは、実際にWindowsを必要とせずに、これらすべてのWindowsアプリケーションを実行できるように、十分な数のWindowsを最初から再実装しようとしています。
スクリーンショットは
Ad
合成データキット
DESCRIPTION
Synthetic Data Kit is a CLI-centric toolkit for generating high-quality synthetic datasets to fine-tune Llama models, with an emphasis on producing reasoning traces and QA pairs that line up with modern instruction-tuning formats. It ships an opinionated, modular workflow that covers ingesting heterogeneous sources (documents, transcripts), prompting models to create labeled examples, and exporting to fine-tuning schemas with minimal glue code. The kit’s design goal is to shorten the “data prep” bottleneck by turning dataset creation into a repeatable pipeline rather than ad-hoc notebooks. It supports generation of rationales/chain-of-thought variants, configurable sampling, and guardrails so outputs meet format constraints and quality checks. Examples and guides show how to target task-specific behaviors like tool use or step-by-step reasoning, then save directly into training-ready files.
オプション
- Four-stage CLI pipeline from ingest to export
- Generation of QA pairs and reasoning traces
- Configurable prompting, sampling, and filters
- Training-ready output formats for fine-tuning
- Quality checks and schema validation
- Examples targeting task-specific reasoning
プログラミング言語
Python
カテゴリー
This is an application that can also be fetched from https://sourceforge.net/projects/synthetic-data-kit.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.