This is the Windows app named Gin Config whose latest release can be downloaded as gin-configv0.1-alphasourcecode.zip. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Gin Config with OnWorks for free.
이 앱을 실행하려면 다음 지침을 따르세요.
- 1. 이 애플리케이션을 PC에 다운로드했습니다.
- 2. 파일 관리자 https://www.onworks.net/myfiles.php?username=XXXXX에 원하는 사용자 이름을 입력합니다.
- 3. 이러한 파일 관리자에서 이 응용 프로그램을 업로드합니다.
- 4. 이 웹사이트에서 모든 OS OnWorks 온라인 에뮬레이터를 시작하지만 더 나은 Windows 온라인 에뮬레이터를 시작합니다.
- 5. 방금 시작한 OnWorks Windows OS에서 원하는 사용자 이름으로 파일 관리자 https://www.onworks.net/myfiles.php?username=XXXXX로 이동합니다.
- 6. 애플리케이션을 다운로드하여 설치합니다.
- 7. Linux 배포 소프트웨어 저장소에서 Wine을 다운로드합니다. 설치가 완료되면 앱을 두 번 클릭하여 Wine과 함께 실행할 수 있습니다. 인기 있는 Windows 프로그램 및 게임을 설치하는 데 도움이 되는 Wine을 통한 멋진 인터페이스인 PlayOnLinux를 사용해 볼 수도 있습니다.
Wine은 Linux에서 Windows 소프트웨어를 실행하는 방법이지만 Windows가 필요하지 않습니다. Wine은 모든 Linux 데스크탑에서 직접 Windows 프로그램을 실행할 수 있는 오픈 소스 Windows 호환성 계층입니다. 본질적으로 Wine은 Windows가 필요하지 않고 모든 Windows 응용 프로그램을 실행할 수 있도록 Windows를 처음부터 충분히 다시 구현하려고 합니다.
스크린 샷
Ad
진 구성
기술
Gin Config is a lightweight and flexible configuration framework for Python built around dependency injection. It enables developers to manage complex parameter hierarchies—particularly common in machine learning experiments—without relying on boilerplate configuration classes or protos. By decorating functions and classes with @gin.configurable, Gin allows their parameters to be overridden using simple configuration files (.gin) or command-line bindings. Users can define default parameter values, scoped configurations, and modular references to functions, classes, or instances, resulting in highly composable and dynamic experiment setups. Gin is particularly popular in TensorFlow and PyTorch projects, where researchers and developers need to tune numerous interdependent parameters across models, datasets, optimizers, and training pipelines.
기능
- Dependency injection–based configuration for Python functions and classes
- Parameter overrides via .gin config files or command-line bindings
- Scoped configurations for managing multiple instances (e.g., GANs, multi-model systems)
- Configurable references for passing functions, classes, or instances dynamically
- Hierarchical configuration for complex experiment graphs
- TensorFlow (gin.tf) and PyTorch (gin.torch) integrations
프로그래밍 언어
파이썬, 유닉스 셸
카테고리
This is an application that can also be fetched from https://sourceforge.net/projects/gin-config.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.
