This is the Linux app named Multimodal whose latest release can be downloaded as multimodalv2025.10.06.00sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Multimodal with OnWorks for free.
ປະຕິບັດຕາມຄໍາແນະນໍາເຫຼົ່ານີ້ເພື່ອດໍາເນີນການ app ນີ້:
- 1. ດາວໂຫຼດຄໍາຮ້ອງສະຫມັກນີ້ໃນ PC ຂອງທ່ານ.
- 2. ໃສ່ໃນຕົວຈັດການໄຟລ໌ຂອງພວກເຮົາ https://www.onworks.net/myfiles.php?username=XXXXX ດ້ວຍຊື່ຜູ້ໃຊ້ທີ່ທ່ານຕ້ອງການ.
- 3. ອັບໂຫລດແອັບພລິເຄຊັນນີ້ຢູ່ໃນຕົວຈັດການໄຟລ໌ດັ່ງກ່າວ.
- 4. ເລີ່ມ OnWorks Linux ອອນລາຍ ຫຼື Windows online emulator ຫຼື MACOS online emulator ຈາກເວັບໄຊທ໌ນີ້.
- 5. ຈາກ OnWorks Linux OS ທີ່ເຈົ້າຫາກໍ່ເລີ່ມຕົ້ນ, ໄປທີ່ຕົວຈັດການໄຟລ໌ຂອງພວກເຮົາ https://www.onworks.net/myfiles.php?username=XXXXX ດ້ວຍຊື່ຜູ້ໃຊ້ທີ່ທ່ານຕ້ອງການ.
- 6. ດາວນ໌ໂຫລດຄໍາຮ້ອງສະຫມັກ, ຕິດຕັ້ງມັນແລະດໍາເນີນການ.
ໜ້າ ຈໍ
Ad
ຮູບແບບຫຼາຍຮູບແບບ
ລາຍລະອຽດ
This project, also known as TorchMultimodal, is a PyTorch library for building, training, and experimenting with multimodal, multi-task models at scale. The library provides modular building blocks such as encoders, fusion modules, loss functions, and transformations that support combining modalities (vision, text, audio, etc.) in unified architectures. It includes a collection of ready model classes—like ALBEF, CLIP, BLIP-2, COCA, FLAVA, MDETR, and Omnivore—that serve as reference implementations you can adopt or adapt. The design emphasizes composability: you can mix and match encoder, fusion, and decoder components rather than starting from monolithic models. The repository also includes example scripts and datasets for common multimodal tasks (e.g. retrieval, visual question answering, grounding) so you can test and compare models end to end. Installation supports both CPU and CUDA, and the codebase is versioned, tested, and maintained.
ຄຸນລັກສະນະ
- Modular encoders, fusion layers, and loss modules for multimodal architectures
- Reference model implementations (ALBEF, CLIP, BLIP-2, FLAVA, MDETR, etc.)
- Example pipelines for tasks like VQA, retrieval, grounding, and multi-task learning
- Flexible fusion strategies: early, late, cross-attention, etc.
- Transform utilities for modality preprocessing and alignment
- Support for CPU and GPU setups, with a versioned, tested codebase
ພາສາການຂຽນໂປຣແກຣມ
Python
ປະເພດ
This is an application that can also be fetched from https://sourceforge.net/projects/multimodal.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.