GoGPT Best VPN GoSearch

Favicon OnWorks

Multimodal download for Linux

Free download Multimodal Linux app to run online in Ubuntu online, Fedora online or Debian online

This is the Linux app named Multimodal whose latest release can be downloaded as multimodalv2025.10.06.00sourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.

Download and run online this app named Multimodal with OnWorks for free.

Ikut arahan ini untuk menjalankan apl ini:

- 1. Memuat turun aplikasi ini dalam PC anda.

- 2. Masukkan dalam pengurus fail kami https://www.onworks.net/myfiles.php?username=XXXXX dengan nama pengguna yang anda mahukan.

- 3. Muat naik aplikasi ini dalam pengurus filem tersebut.

- 4. Mulakan OnWorks Linux dalam talian atau emulator dalam talian Windows atau emulator dalam talian MACOS dari tapak web ini.

- 5. Daripada OS Linux OnWorks yang baru anda mulakan, pergi ke pengurus fail kami https://www.onworks.net/myfiles.php?username=XXXX dengan nama pengguna yang anda mahukan.

- 6. Muat turun aplikasi, pasang dan jalankan.

SKRIN

Ad


multimodal


DESCRIPTION

This project, also known as TorchMultimodal, is a PyTorch library for building, training, and experimenting with multimodal, multi-task models at scale. The library provides modular building blocks such as encoders, fusion modules, loss functions, and transformations that support combining modalities (vision, text, audio, etc.) in unified architectures. It includes a collection of ready model classes—like ALBEF, CLIP, BLIP-2, COCA, FLAVA, MDETR, and Omnivore—that serve as reference implementations you can adopt or adapt. The design emphasizes composability: you can mix and match encoder, fusion, and decoder components rather than starting from monolithic models. The repository also includes example scripts and datasets for common multimodal tasks (e.g. retrieval, visual question answering, grounding) so you can test and compare models end to end. Installation supports both CPU and CUDA, and the codebase is versioned, tested, and maintained.



Ciri-ciri

  • Modular encoders, fusion layers, and loss modules for multimodal architectures
  • Reference model implementations (ALBEF, CLIP, BLIP-2, FLAVA, MDETR, etc.)
  • Example pipelines for tasks like VQA, retrieval, grounding, and multi-task learning
  • Flexible fusion strategies: early, late, cross-attention, etc.
  • Transform utilities for modality preprocessing and alignment
  • Support for CPU and GPU setups, with a versioned, tested codebase


Bahasa Pengaturcaraan

Python


Kategori

Perpustakaan

This is an application that can also be fetched from https://sourceforge.net/projects/multimodal.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.


Pelayan & Stesen Kerja Percuma

Muat turun apl Windows & Linux

Arahan Linux

Ad




×
Pengiklanan
❤ ️Beli, tempah atau beli di sini — tanpa kos, membantu memastikan perkhidmatan percuma.