This is the Windows app named Synthetic Data Kit whose latest release can be downloaded as synthetic-data-kitsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Synthetic Data Kit with OnWorks for free.
Volg deze instructies om deze app uit te voeren:
- 1. Download deze applicatie op uw pc.
- 2. Voer in onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX in met de gebruikersnaam die u wilt.
- 3. Upload deze applicatie in zo'n bestandsbeheerder.
- 4. Start een OS OnWorks online emulator vanaf deze website, maar een betere Windows online emulator.
- 5. Ga vanuit het OnWorks Windows-besturingssysteem dat u zojuist hebt gestart naar onze bestandsbeheerder https://www.onworks.net/myfiles.php?username=XXXXX met de gewenste gebruikersnaam.
- 6. Download de applicatie en installeer deze.
- 7. Download Wine van de softwarebronnen voor Linux-distributies. Eenmaal geïnstalleerd, kunt u vervolgens dubbelklikken op de app om ze met Wine uit te voeren. Je kunt ook PlayOnLinux proberen, een mooie interface via Wine waarmee je populaire Windows-programma's en -games kunt installeren.
Wine is een manier om Windows-software op Linux uit te voeren, maar zonder dat Windows vereist is. Wine is een open-source Windows-compatibiliteitslaag die Windows-programma's rechtstreeks op elke Linux-desktop kan uitvoeren. In wezen probeert Wine genoeg van Windows opnieuw te implementeren, zodat het al die Windows-applicaties kan draaien zonder Windows echt nodig te hebben.
SCREENSHOTS
Ad
Synthetic Data Kit
PRODUCTBESCHRIJVING
Synthetic Data Kit is a CLI-centric toolkit for generating high-quality synthetic datasets to fine-tune Llama models, with an emphasis on producing reasoning traces and QA pairs that line up with modern instruction-tuning formats. It ships an opinionated, modular workflow that covers ingesting heterogeneous sources (documents, transcripts), prompting models to create labeled examples, and exporting to fine-tuning schemas with minimal glue code. The kit’s design goal is to shorten the “data prep” bottleneck by turning dataset creation into a repeatable pipeline rather than ad-hoc notebooks. It supports generation of rationales/chain-of-thought variants, configurable sampling, and guardrails so outputs meet format constraints and quality checks. Examples and guides show how to target task-specific behaviors like tool use or step-by-step reasoning, then save directly into training-ready files.
Kenmerken
- Four-stage CLI pipeline from ingest to export
- Generation of QA pairs and reasoning traces
- Configurable prompting, sampling, and filters
- Training-ready output formats for fine-tuning
- Quality checks and schema validation
- Examples targeting task-specific reasoning
Programmeertaal
Python
Categorieën
This is an application that can also be fetched from https://sourceforge.net/projects/synthetic-data-kit.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.