This is the Windows app named DetectAndTrack whose latest release can be downloaded as DetectAndTracksourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named DetectAndTrack with OnWorks for free.
Следуйте этим инструкциям, чтобы запустить это приложение:
- 1. Загрузил это приложение на свой компьютер.
- 2. Введите в нашем файловом менеджере https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.
- 3. Загрузите это приложение в такой файловый менеджер.
- 4. Запустите любой онлайн-эмулятор OS OnWorks с этого сайта, но лучше онлайн-эмулятор Windows.
- 5. В только что запущенной ОС Windows OnWorks перейдите в наш файловый менеджер https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.
- 6. Скачайте приложение и установите его.
- 7. Загрузите Wine из репозиториев программного обеспечения вашего дистрибутива Linux. После установки вы можете дважды щелкнуть приложение, чтобы запустить его с помощью Wine. Вы также можете попробовать PlayOnLinux, необычный интерфейс поверх Wine, который поможет вам установить популярные программы и игры для Windows.
Wine - это способ запустить программное обеспечение Windows в Linux, но без Windows. Wine - это уровень совместимости с Windows с открытым исходным кодом, который может запускать программы Windows непосредственно на любом рабочем столе Linux. По сути, Wine пытается заново реализовать Windows с нуля, чтобы можно было запускать все эти Windows-приложения, фактически не нуждаясь в Windows.
СКРИНШОТЫ
Ad
DetectAndTrack
ОПИСАНИЕ
DetectAndTrack is the reference implementation for the CVPR 2018 paper “Detect-and-Track: Efficient Pose Estimation in Videos,” focusing on human keypoint detection and tracking across video frames. The system combines per-frame pose detection with a tracking mechanism to maintain identities over time, enabling efficient multi-person pose estimation in video. Code and instructions are organized to replicate paper results and to serve as a starting point for researchers working on pose in video. Although the repo has been archived and is now read-only, its issue tracker and artifacts remain useful for understanding implementation details and experimental settings. The project sits alongside other Facebook Research vision efforts, offering historical context for the evolution of video pose and tracking techniques. Researchers can still study the algorithms, adapt the pipeline, or port ideas into modern frameworks.
Особенности
- Multi-person pose detection in videos
- Temporal tracking to maintain identities across frames
- Reference code aligned with the CVPR 2018 paper
- Scripts to reproduce evaluation and benchmarks
- Modular components for detection and tracking stages
- Read-only archival for stable, citable reference
Язык программирования
Питон
Категории
This is an application that can also be fetched from https://sourceforge.net/projects/detectandtrack.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.