This is the Windows app named Gin Config whose latest release can be downloaded as gin-configv0.1-alphasourcecode.zip. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Gin Config with OnWorks for free.
Следуйте этим инструкциям, чтобы запустить это приложение:
- 1. Загрузил это приложение на свой компьютер.
- 2. Введите в нашем файловом менеджере https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.
- 3. Загрузите это приложение в такой файловый менеджер.
- 4. Запустите любой онлайн-эмулятор OS OnWorks с этого сайта, но лучше онлайн-эмулятор Windows.
- 5. В только что запущенной ОС Windows OnWorks перейдите в наш файловый менеджер https://www.onworks.net/myfiles.php?username=XXXXX с желаемым именем пользователя.
- 6. Скачайте приложение и установите его.
- 7. Загрузите Wine из репозиториев программного обеспечения вашего дистрибутива Linux. После установки вы можете дважды щелкнуть приложение, чтобы запустить его с помощью Wine. Вы также можете попробовать PlayOnLinux, необычный интерфейс поверх Wine, который поможет вам установить популярные программы и игры для Windows.
Wine - это способ запустить программное обеспечение Windows в Linux, но без Windows. Wine - это уровень совместимости с Windows с открытым исходным кодом, который может запускать программы Windows непосредственно на любом рабочем столе Linux. По сути, Wine пытается заново реализовать Windows с нуля, чтобы можно было запускать все эти Windows-приложения, фактически не нуждаясь в Windows.
СКРИНШОТЫ
Ad
Gin Config
ОПИСАНИЕ
Gin Config is a lightweight and flexible configuration framework for Python built around dependency injection. It enables developers to manage complex parameter hierarchies—particularly common in machine learning experiments—without relying on boilerplate configuration classes or protos. By decorating functions and classes with @gin.configurable, Gin allows their parameters to be overridden using simple configuration files (.gin) or command-line bindings. Users can define default parameter values, scoped configurations, and modular references to functions, classes, or instances, resulting in highly composable and dynamic experiment setups. Gin is particularly popular in TensorFlow and PyTorch projects, where researchers and developers need to tune numerous interdependent parameters across models, datasets, optimizers, and training pipelines.
Особенности
- Dependency injection–based configuration for Python functions and classes
- Parameter overrides via .gin config files or command-line bindings
- Scoped configurations for managing multiple instances (e.g., GANs, multi-model systems)
- Configurable references for passing functions, classes, or instances dynamically
- Hierarchical configuration for complex experiment graphs
- TensorFlow (gin.tf) and PyTorch (gin.torch) integrations
Язык программирования
Python, оболочка Unix
Категории
This is an application that can also be fetched from https://sourceforge.net/projects/gin-config.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.
