This is the Windows app named Metaseq whose latest release can be downloaded as metaseqsourcecode.tar.gz. It can be run online in the free hosting provider OnWorks for workstations.
Download and run online this app named Metaseq with OnWorks for free.
Follow these instructions in order to run this app:
- 1. Downloaded this application in your PC.
- 2. Enter in our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 3. Upload this application in such filemanager.
- 4. Start any OS OnWorks online emulator from this website, but better Windows online emulator.
- 5. From the OnWorks Windows OS you have just started, goto our file manager https://www.onworks.net/myfiles.php?username=XXXXX with the username that you want.
- 6. Download the application and install it.
- 7. Download Wine from your Linux distributions software repositories. Once installed, you can then double-click the app to run them with Wine. You can also try PlayOnLinux, a fancy interface over Wine that will help you install popular Windows programs and games.
Wine is a way to run Windows software on Linux, but with no Windows required. Wine is an open-source Windows compatibility layer that can run Windows programs directly on any Linux desktop. Essentially, Wine is trying to re-implement enough of Windows from scratch so that it can run all those Windows applications without actually needing Windows.
SCREENSHOTS
Ad
Metaseq
DESCRIPTION
Metaseq is a flexible, high-performance framework for training and serving large-scale sequence models, such as language models, translation systems, and instruction-tuned LLMs. Built on top of PyTorch, it provides distributed training, model sharding, mixed-precision computation, and memory-efficient checkpointing to support models with hundreds of billions of parameters. The framework was used internally at Meta to train models like OPT (Open Pre-trained Transformer) and serves as a reference implementation for scaling transformer architectures efficiently across GPUs and nodes. It supports both pretraining and fine-tuning workflows with data pipelines for text, multilingual corpora, and custom tokenization schemes. Metaseq also includes APIs for evaluation, generation, and model serving, enabling seamless transitions from training to inference.
Features
- Distributed training and inference for large-scale transformer models
- Support for model, data, and pipeline parallelism across multiple GPUs and nodes
- Mixed-precision training and memory-efficient checkpointing
- Pretraining and fine-tuning workflows for text and multilingual data
- APIs for text generation, evaluation, and serving large models
- Reference implementation for Meta’s OPT and other large language models
Programming Language
Python
Categories
This is an application that can also be fetched from https://sourceforge.net/projects/metaseq.mirror/. It has been hosted in OnWorks in order to be run online in an easiest way from one of our free Operative Systems.